Towards Universal Models with NLP for Computer Vision Transformer and Attention Mechanism

Han Hu

Visual Computing Group Microsoft Research Asia (MSRA) April 8th, 2021

Grand Unification Theory in Physic

• The Holy Grail in Physics

A Unification Story for Al

- The deep learning era
 - a universal pipeline

A Unification Story for Al

• What about models?

convolution

self-attention (Transformers)

graph networks

Why universal models?

- Facilitate joint modeling of visual and textual signals
- Modeling and learning knowledge from both domains can be more deeply shared
- Pursuing universality, which is beauty itself

Model Evolution in NLP

Transformers

- The cornerstone architecture in NLP
- Used in the revolutionary unsupervised pretraining methods (BERT, GPT)

Ashish Vaswani et al, Attention is all you need, NeurIPS'2017

<EOS>

<EOS>

Figure 1: The Transformer - model architecture.

Self-Attention Unit

- Transforms the word/token input feature by encoding its relationship with other words/tokens
- A weighted average of Value, where the weight is the normalized inner product of Query and Key

Model Evolution in CV

1989

Convolution

Yann LeCun

LeNet, AlexNet, GoogleNet, VGGNet, ResNet ...

Deformable Convolution (2017)

Dai et al. Deformable Convolution Networks. ICCV 2017

Can NLP/CV share the same basic modules?

Adapting <u>convolution layers</u> for NLP modeling

	• 2017.5	• 2019.2 • 2019.4					
Convolution based	ConvSeq2Seq FAIR	Dynamic Convolution FAIR	Deformable Convolution MSRA				
Transformer based	2017.6 Transformers Google Brain	dominat	te >				

Can NLP/CV share the same basic modules?

• Adapting self-attention/Transformers models for visual modeling

DETR for Object Detection

• End-to-end object detection without using priors

Nicolas Carion et al. End-to-End Object Detection with Transformers. ECCV 2020

Vision Transformers (ViT)

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR' 2021

Good Real Speed of ViT

Object Detection on COCO test-dev

1 Leaderboard

🗇 Dataset

= DetectoRS (ResNeXt-101-64x4d, multi-scale AC-FPN Cascade R-CNN (X-152-32x8d-FPN-IN5k multi scale, only CEM) D-RECN + SNIP (DPN-98 with flip, multi Mask R-CNN (ResNeXt-101-FPN 40 X06 Faster R-CNN (box refinement, context, multi-scale 30 SSD512 20 10 Jan '16 Jul '16 Jan '17 Jul '17 Jan '18 Jul '18 Jan '19 Jul '19 Jan '20 Jul'20 Jan '21 box AP ~ All models View EXTRA BOX **†** AP50 AP75 APS APM APL TRAINING PAPER RESULT YEAR RANK MODEI CODE DATA Swin Transformer: Swin-L Hierarchical Vision 58.7 0 Ð 2021 (HTC++, multi scale) Transformer using Shifted Windows Swin Transformer: Swin-L Hierarchical Vision 57.7 0 -> 2021 2 (HTC++, single scale) Transformer using Shifted Windows Cascade Eff-B7 NAS-Simple Copy-Paste is a FPN Strong Data Augmentation 57.3 0 -> 2020 (1280, self-training Copy Method for Instance Segmentation Paste, single-scale) CenterNet2 Probabilistic two-stage (Res2Net-101-DCN-BiFPN, 56.4 74.0 61.6 38.7 59.7 68.6 0 -> 2021 self-training, 1560 singledetection scale) Scaled-YOLOv4: Scaling YOLOv4-P7 56.0 73.3 61.2 38.9 60.0 68.6 0 -> 2020 5 × Cross Stage Partial (CSP-P7, multi-scale) Network

Semantic Segmentation on ADE20K val

(a) Swin Transformer (ours)

https://github.com/microsoft/Swin-Transformer

How did we get here?

Visual Recognition Paradigm

various recognition tasks

An Object Detection Example

pixel-to-pixel

object-to-pixel

object-to-object

Relationship Modeling of Basic Visual Elements

our study timeline

Object-to-Object Relation Modeling

None -----> Self-Attention

- Object Detection
 - RelationNet [CVPR'2018]
- Video Action Recognition
 - Videos as Space-Time Region Graphs [ECCV'2018]
- Multi-Object Tracking
 - Spatial-Temporal Relation Network [ICCV'2019]
- Video Object Detection
 - RDN [ICCV'2019]
 - MEGA [CVPR'2020]

Object-to-Object Relation Modeling

Object-to-Object Relation Modeling

It is much easier to detect the *glove* if we know there is a *baseball player*.

Object Relation Module

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. Relation Networks for Object Detection. CVPR 2018

Relative Position for Relation Modeling

in standard *attention* module

in object relation module

Relative Position for NLP modeling (2020)

RETHINKING POSITIONAL ENCODING IN LANGUAGE PRE-TRAINING

Guolin Ke, Di He & Tie-Yan Liu Microsoft Research {quolin.ke, dihe, tyliu}@microsoft.com

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel* Noam Shazeer* Adam Roberts* Katherine Lee* Sharan Narang Michael Matena Yanqi Zhou Wei Li Peter J. Liu

CRAFFEL@GMAIL.COM NOAM@GOOGLE.COM ADAROB@GOOGLE.COM KATHERINELEE@GOOGLE.COM SHARANNARANG@GOOGLE.COM MMATENA@GOOGLE.COM YANQIZ@GOOGLE.COM MWEILI@GOOGLE.COM PETERJLIU@GOOGLE.COM

Google, Mountain View, CA 94043, USA

The First Fully End-to-End Object Detector

back propagation steps

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

On Stronger Base Detectors

backbone	setting	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS	
faster RCNN	2fc+SoftNMS	32.2/32.7	52.9/53.6	34.2/34.7	58.3M	122.2B	
	2fc+RM+SoftNMS	34.7/35.2	55.3/ 56.2	37.2/37.8	64.3M	124.6B	+3.0 mAP
	2fc+RM+e2e	35.2/35.4	55.8 /56.1	38.2/38.5	64.6M	124.9B	
	2fc+SoftNMS	36.8/37.2	57.8/58.2	40.7/41.4	56.4M	145.8B	
FPN	2fc+RM+SoftNMS	38.1/38.3	59.5/59.9	41.8/42.3	62.4M	157.8B	+2.0 mAP
	2fc+RM+e2e	38.8/38.9	60.3/60.5	42.9/43.3	62.8M	158.2B	
DCN	2fc+SoftNMS	37.5/38.1	57.3/58.1	41.0/41.6	60.5M	125.0B	
	2fc+RM+SoftNMS	38.1/38.8	57.8/ 58.7	41.3/42.4	66.5M	127.4B	+1.0 mAP
	2fc+RM+e2e	38.5/39.0	57.8 /58.6	42.0/42.9	66.8M	127.7B	

*Faster R-CNN with ResNet-101 model are used (evaluation on *minival/test-dev* are reported)

Multi-Object Tracking

Jiarui Xu, Yue Cao, Zheng Zhang and Han Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. ICCV, 2019

Video Object Detection

Jiajun Deng, et al. *Relation Distillation Networks for Video Object Detection*. ICCV, 2019 Haiping Wu, et al. *Sequence Level Semantics Aggregation for Video Object Detection*. ICCV, 2019 Yihong Chen, et al. *Memory Enhanced Global-Local Aggregation for Video Object Detection*. CVPR, 2020

Object-to-Pixel Relation Modeling

RolAlign ----- Self-Attention

- Learn Region Features [ECCV'2018]
- Transformer Detector [ECCV'2020]
- RelationNet++ [NeurIPS'2020]

Learnable Object-to-Pixel Relation

Geometric

Appearance

Jiayuan Gu et al. Learning Region Features for Object Detection. ECCV 2018

Transformer Detectors (DETR)

Implicitly learnt

Nicolas Carion et al. End-to-End Object Detection with Transformers. ECCV'2020

RelationNet++

Table 12: Results on MS COCO test-dev set, '*' denotes the m

method	backbone	AP	AP_{50}	AP_{75}
DCN v2* [40]	ResNet-101-DCN	46.0	67.9	50.8
SNIPER* [27]	ResNet-101	46.5	67.5	52.2
RepPoints* [35]	ResNet-101-DCN	46.5	67.4	50.9
MAL* [13]	ResNeXt-101	47.0	66.1	51.2
CentripetalNet* [6]	Hourglass-104	48.0	65.1	51.8
ATSS* [37]	ResNeXt-64x4d-101-DCN	50.7	68.9	56.3
TSD* [28]	SENet154-DCN	51.2	71.9	56.0
RelationNet++ (our)	ResNeXt-64x4d-101-DCN	50.3	69.0	55.0
RelationNet++ (our)*	ResNeXt-64x4d-101-DCN	52.7	70.4	58.3

Cheng Chi et al. RelationNet++: Bridging Visual Representations for Object Detection via Transformer Decoder. NeurIPS'2020

Pixel-to-Pixel Relation Modeling

Convolution Variants

Self-Attention

Usage

✓Complement convolution

✓ Replace convolution

Complement Convolution

• "Convolution is too local"

Figure credit: Van Den Oord et al.

Complement Convolution

• Non-Local Networks [Wang et al, CVPR'2018]

The Degeneration Problem (2019)

- Expectation of Ideally Learnt Relation
 - Different queries affected by **different** key

Query

The Degeneration Problem (2019)

- What does the Self-Attention Learn?
 - Different queries affected by the **same** keys

Query

Key

Visualizations on Real Tasks

- 🕂 indicates the query point
- The activation map for different queries are similar
- The self-attention model degenerates to a unary model

Object Detection

Semantic Segmentation

[GCNet, ICCVW'2019]

https://arxiv.org/pdf/1904.11492.pdf

GCNet: Explicitly Use the Same Attention Map

GCNet: Explicitly Use the Same Attention Map

borrowed from SE-Net (champion of 2017 ImageNet Challenge)

GCNet: Explicitly Use the Same Attention Map

COCO Object Detection Results

• Baseline: Mask R-CNN + ResNet50 + FPN

method	AP (bbox)	AP (mask)	#param	FLOPs
baseline	37.2	33.8	44.4M	279.4G
NL-Net	38.0	34.7	46.5M	288.7G
SE-Net	38.2	34.7	46.9M	279.5G
GC-Net (1 layer)	38.1	34.9	44.5M	279.4G
GC-Net (all layers)	39.4	35.7	46.9M	279.6G

+2.2 mAP +1.9 mAP

with little computation and model size overhead!

DNL: How to Effectively Model Pairwise?

• Disentangled design (ECCV'2020)

Minghao Yin et al. Disentangled Non-Local Neural Networks. ECCV'2020

Replace Convolution

• "Convolution is exponentially inefficient"

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

But ... Slow in Real Computation

• Different queries use different key sets

Vision Transformers for Image Recognition

• ICLR'2021 by Google Brain

Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Tech Report 2020

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.

Performance

(c) System-level Comparison

Mathad	mini-val		test-dev		#		
Ivietnou	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}	#param.	I LOI S	
RepPointsV2* [11]	-	-	52.1	-	-	-	
GCNet* [6]	51.8	44.7	52.3	45.4	-	1041G	
RelationNet++* [12]	-	-	52.7	-	-	-	
SpineNet-190 [20]	52.6	-	52.8	-	164M	1885G	
ResNeSt-200* [75]	52.5	-	53.3	47.1	-	-	
EfficientDet-D7 [58]	54.4	-	55.1	-	77M	410G	
DetectoRS* [45]	-	-	55.7	48.5	-	-	
YOLOv4 P7* [3]	-	-	55.8	-	-	-	
Copy-paste [25]	55.9	47.2	56.0	47.4	185M	1440G	
X101-64 (HTC++)	52.3	46.0	2-7	-	155M	1033G	
Swin-B (HTC++)	56.4	49.1	<u>Z:</u> /	-	160M	1043G	
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G	
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-	

Table 2. Results on COCO object detection and instance segmentation. [†]denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

ADE	val	test	#param		EDC	
Method	Backbone	mIoU	score		I'LOFS	1.1.2
DANet [22]	ResNet-101	45.2	-	69M	1119G	15.2
DLab.v3+ [10]	ResNet-101	44.1	-	63M	1021G	16.0
ACNet [23]	ResNet-101	45.9	38.5	-		
DNL [68]	ResNet-101	46.0	56.2	69M	1249G	14.8
OCRNet [70]	ResNet-101	45.3	56.0	56M	923G	19.3
UperNet [66]	ResNet-101	44.9	-	86M	1029G	20.1
OCRNet [70]	HRNet-w48	45.7	-	71M	664G	12.5
DLab.v3+ [10]	ResNeSt-101	46.9	55.1	66M	1051G	11.9
DLab.v3+ [10]	ResNeSt-200	48.4	-	88M	1381G	8.1
SETR [78]	T-Large [‡]	50.3	61.7	308M	-	-
UperNet	DeiT-S [†]	44.0	-	52M	1099G	16.2
UperNet	Swin-T	46.1		60M	945G	18.5
UperNet	Swin-S	49.5	3.2	81M	1038G	15.2
UperNet	Swin-B [‡]	51.6	-	121M	1841G	8.7
UperNet	Swin-L ^{\ddagger}	53.5	62.8	234M	3230G	6.2

Table 3. Results of semantic segmentation on the ADE20K val and test set. [†] indicates additional deconvolution layers are used to produce hierarchical feature maps. ‡ indicates that the model is pre-trained on ImageNet-22K.

Performance

(a) Regular ImageNet-1K trained models								
method	image	#naram	FI OPe	throughput	ImageNet			
method	size	πparam.	I'LOI S	(image / s)	top-1 acc.			
RegNetY-4G [47]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [47]	224^{2}	39M	8.0G	591.6	81.7			
RegNetY-16G [47]	224^{2}	84M	16.0G	334.7	82.9			
EffNet-B3 [57]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [57]	380^{2}	19M	4.2G	349.4	82.9			
EffNet-B5 [57]	456^{2}	30M	9.9G	169.1	83.6			
EffNet-B6 [57]	528^{2}	43M	19.0G	96.9	84.0			
EffNet-B7 [57]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	77.9			
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	76.5			
DeiT-S [60]	224^{2}	22M	4.6G	940.4	79.8			
DeiT-B [60]	224^{2}	86M	17.5G	292.3	81.8			
DeiT-B [60]	384 ²	86M	55.4G	85.9	83.1			
Swin-T	224^{2}	29M	4.5G	755.2	81.3			
Swin-S	224^{2}	50M	8.7G	436.9	83.0			
Swin-B	224^{2}	88M	15.4G	278.1	83.3			
Swin-B	384^{2}	88M	47.0G	84.7	84.2			
(b) Ima	ageNet	t-22K pr	e-traine	d models				
mathod	image	#porom		throughput	ImageNet			
methou	size	#param.	FLOFS	(image / s)	top-1 acc.			
R-101x3 [37]	384 ²	388M	204.6G	-	84.4			
R-152x4 [37]	480^{2}	937M	840.5G	-	85.4			
ViT-B/16 [19]	384^{2}	86M	55.4G	85.9	84.0			
ViT-L/16 [19]	384 ²	307M	190.7G	27.3	85.2			
Swin-B	224^{2}	88M	15.4G	278.1	85.2			
Swin-B	384 ²	88M	47.0G	84.7	86.0			
Swin-L	384 ²	197M	103.9G	42.1	86.4			

Table 1. Comparison of different backbones on ImageNet-1K clas-
sification. Throughput is measured using the GitHub repository
of [65] and a V100 GPU, following [60].

(a) Various frameworks									
Metho	od	Backb	one	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅ ^{box}	#paran	n. FLOPs	FPS
Casca	de	R-5	0	46.3	64.3	50.5	82M	739G	18.0
Mask R-	CNN	Swin	-Т	50.5	69.3	54.9	86M	745G	15.3
ATS	c	R-5	0	43.5	61.9	47.0	32M	205G	28.3
AIS	3	Swin	-Т	47.2	66.5	51.3	36M	215G	22.3
DanDain	toV2	R-5	0	46.5	64.6	50.3	42M	274G	13.6
Keprom	15 V Z	Swin	-Т	50.0	68.5	54.2	45M	283G	12.0
Spars	se	R-5	0	44.5	63.4	48.2	106M	I 166G	21.0
R-CNN		Swin	-Т	47.9	67.3	52.3	110M	I 172G	18.4
(b) '	Vario	us bac	kbo	nes w.	Casc	ade M	ask R-	CNN	
	AP ^{boy}	$^{\circ}AP_{50}^{box}$	AP_{75}^{bc}	AP^{m}	$^{ask}AP_5^n$	$_{0}^{\text{nask}} AP$	mask par	amFLOP	sFPS
DeiT-S [†]	48.0	67.2	51.7	7 41.	4 64	.2 44	.3 80	M 889G	10.4
R5 0	46.3	64.3	50.5	5 40.	1 61	.7 43	6.4 82	M 739G	18.0
Swin-T	50.5	69.3	54.9	9 43.	7 66	.6 47	.1 86	M 745G	15.3
X101-32	48.1	66.5	52.4	4 41.	6 63	.9 45	5.2 101	M 819G	12.8
Swin-S	51.8	70.4	56.3	3 44.	7 67	.9 48	3.5 107	M 838G	12.0
X101-64	48.3	66.4	52.3	3 41.	7 64	.0 45	5.1 140	M 972G	10.4
Swin-B	51.9	70.9	56.5	5 45.	0 68	.4 48	3.7 145	5M 982G	11.6

Universal Models for NLP/CV

Thanks All! Q & A