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Constraints for Subspace Clustering
Han Hu, Jianjiang Feng, Member, IEEE, and Jie Zhou, Senior Member, IEEE

Abstract—Data in many image and video analysis tasks can be viewed as points drawn from multiple low-dimensional subspaces with each
subspace corresponding to one category or class. One basic task for processing such kind of data is to separate the points according to
the underlying subspace, referred to as subspace clustering. Extensive studies have been made on this subject, and nearly all of them use
unconstrained subspace models, meaning the points can be drawn from everywhere of a subspace, to represent the data. In this paper,
we attempt to do subspace clustering based on a constrained subspace assumption that the data is further restricted in the corresponding
subspaces, e.g., belonging to a submanifold or satisfying the spatial regularity constraint. This assumption usually describes the real data
better, such as differently moving objects in a video scene and face images of different subjects under varying illumination. A unified integer
linear programming optimization framework is used to approach subspace clustering, which can be efficiently solved by a branch-and-bound
(BB) method. We also show that various kinds of supervised information, such as subspace number, outlier ratio, pairwise constraints,
size prior and etc., can be conveniently incorporated into the proposed framework. Experiments on real data show that the proposed
method outperforms the state-of-the-art algorithms significantly in clustering accuracy. The effectiveness of the proposed method in exploiting
supervised information is also demonstrated.

Index Terms—subspace clustering, motion segmentation, face clustering, linear programming, branch and bound, constrained clustering
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1 INTRODUCTION

One inherent nature of vision problems reveals that the observed
data is often of high-dimension, but it usually contains low-
dimensional structure which enables intelligent modeling and
processing. Linear subspace perhaps heads the popularity list
of such structures by vision scientists, due to its generality,
efficiency and effectiveness. Many types of visual data, e.g., point
trajectories of a moving object captured by an affine camera
[1], images of an object under varying illumination [2], face
shape/appearances of a subject under different poses [3], optical
images of a same character written by different persons [4], local
patches [5] or texture features [6] of pixels/superpixels belonging
to the same image segment, and etc, have been empirically shown
to be well-approximated by a low-dimensional linear subspace.
The ubiquitous of such data in vision applications has driven
the development of several techniques to find a low-dimensional
representation of the original high-dimensional data, such as the
well known principal component analysis (PCA), singular value
decomposition (SVD) and their variants.

In some applications, however, the observed data would come
from multiple categories thus lying on a union of subspaces. To
learn from this kind of data, first of all, we may need to separate
it according to the underlying subspaces, also known as subspace
clustering. For example, to learn the 3D shapes and activity
patterns of multiple targets in a video scene, one should first
segment the scene into differently moving objects according to the
underlying motion subspaces. Due to the numerous applications
in computer vision and image processing, during the past two
decades, subspace clustering has been extensively studied and
many approaches have been proposed [7]. When the subspaces
are independent and noise/outlier free, many existing algorithms
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are able to perfectly address the problem [8]. However, in the
cases where partially dependent subspaces1 exist, the existing
algorithms often fail at least for points around the intersection of
the dependent subspaces. Fig. 1 shows two toy examples where
one of the state-of-the-art algorithms, Low Rank Representation
(LRR) [10], fails in separating the data points especially for the
ones near the intersection. This is probably because LRR, and so
do most of the other existing algorithms, uses unconstrained sub-
space models, meaning the points can be drawn from everywhere
of a subspace, to describe the data, which leads to the ambiguity
of categorizing points at the intersection area.

In this paper, we advocate a constrained subspace model
assuming that the data is usually further restricted. We consider
two types of restriction: manifold constraint and spatial regularity
constraint.

The manifold constraint says that the data is shaped not only
by the subspace constraints, but may also be further restricted
on a submanifold. This constraint is very common in subspace
clustering applications. For instance, the problem of motion seg-
mentation given a monocular video sequence can be formulated
as a subspace clustering problem in the case of an affine camera
model [11], since the image coordinates of an object could be
factorized by the camera matrix and the 3D shape, leading to
a linear subspace with dimension no more than 4. Apart from
the linear subspace constraint, the point trajectories are further
restricted to an affine subspace with dimension no more than 3.
Moreover, if the camera is orthogonal, the camera matrix will be
on a Stiefel manifold after registering the image coordinates to
their centroid [1]. In the problem of face clustering [12], ignoring
shadows, the face images of a subject with varying illumination
can be approximated by the multiplication of 3 factors: the
dense normal to the surface of the object, the albedo, and the
lighting directions [2]. In this problem, apart from the subspace

1. There exists a subspace intersecting with the union of other subspaces. A
formal definition of partially dependent subspaces can be found in [9].
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(a) data points with a circle-manifold constraint.

(b) data points with spatial regularity constraint.

Fig. 1. Effect of using manifold constraint and spatial reg-
ularity constraint in subspace clustering. Left: the clustering
results using LRR method [10]. Right: the clustering results
using our method.

constraint, the face images should further satisfy the surface
normal constraint, namely surface normals are on a specified
manifold.

The spatial regularity constraint assumes that the spatially close
data points usually belong to a same cluster. This is also a very
common assumption made in many computer vision researches
[13]. Also take motion segmentation as an example. The points
from different moving objects are usually far away in their spatial
locations (point trajectories), which could act as a strong prior for
separating differently moving objects.

Revisit Fig. 1. In Fig. 1(a), the data points from a cluster
are restricted to a submanifold ∥X∥2 = r (radius r unknown)
on a linear subspace. The principle angle distance [14] between
two subspaces is so close to each other that they can hardly
be separated by unconstrained subspace model. But if circle-
manifold model is used, the two subspaces can be correctly
segmented. In Fig. 1(b), the data points from different subspaces
appear in disconnected areas. By incorporating spatial regularity
constraint, the points in the intersection area of the two subspaces
can be correctly categorized.

Most existing methods are hard to be adapted to exploit the
above constraints. In this paper, we encode them by a unified
integer programming problem which can be conveniently solved
by the branch-and-bound (BB) method. By encoding the manifold
and spatial regularity constraints, we achieve the state-of-the-
art performance in motion segmentation, face clustering and
handwritten digit clustering applications. The main contributions
of this work involve:

• We propose the concept of constrained subspace model
instead of the commonly used unconstrained subspace model
for subspace clustering. The concept is instantiated by two
kinds of constraints (manifold constraint and spatial regu-
larity constraint) and formulated by a unified integer pro-
gramming problem. By exploiting such constraints, we beat
the state-of-the-art algorithms on several popular benchmark
data, e.g., Hopkins155 datasets [15] for motion segmenta-
tion problem, Extended Yale Face B dataset [16], [17] for
face clustering and USPS dataset [18] for handwritten digit

clustering.
• Supervised information often plays a key role in bridging

the gap between low-level features and high-level concepts
in clustering tasks [19], [20]. To the best of our knowledge,
we are the first to systematically study the problem of
constrained subspace clustering and we successfully encode
several common types of supervised constraints, including
subspace number, outlier ratio, pairwise constraints and size
prior.

Our code are publicly available at https://sites.google.com/site/
hanhushomepage/projects-researches.

2 RELATED WORKS

In this section, we review the existing subspace clustering meth-
ods. They can be roughly grouped into three categories: algebraic,
spectral clustering based and model estimation/selection based.

Algebraic Methods. There are two kinds of well known alge-
braic methods worth mentioned: factorization based method and
Generalized Principal Component Analysis (GPCA). Factoriza-
tion based method and its variants [11], [21] are almost the only
choice for subspace clustering in the early researches. They are
based on the observation that for two points from two independent
subspaces, the corresponding entry in the shape interaction matrix
[11] is zero when the data is noise free. However, although some
enhancing techniques have been proposed [22], [23], generally the
performance of these algorithms drops quickly in the presence of
noise, degeneracy, or partially dependent subspaces. The GPCA
method [24] is another direction which fits a polynomial model to
the data points. It gains much concern for its elegant formulation
and the ability to handle degenerated and partially dependent
subspaces. However, the complexity and trajectories required
for this method increase dramatically when the number and
dimension of subspaces increase, which significantly limits the
application of this method.

Spectral Clustering based Methods. Inspired by the success
of spectral clustering method [25] for the general clustering
problem, a lot of spectral clustering based methods have been
proposed to address the more specific subject, subspace clustering
[26], [27], [9], [28], [29], [28], [12], [30], [8], [31]. The main
differences among these methods lie in the way they build the
similarity matrix. There are mainly three fashions. The first one
is to compute similarity matrix directly from algebraic methods
[26], [9]. Some other methods form similarity matrix by defin-
ing a point-to-subspace or subspace-to-subspace distance metric
[27], [28], [32]. More recently, more works exploit the self-
reconstruction properties to compute similarities [29], [12], [6],
[30], [33], [8], [34], [35], [31]. To the present, the spectral clus-
tering based methods achieve the state-of-the-art performance on
several benchmark datasets, e.g., Hopkins155 [36] and Extended
Yale Face B [37]. The success is partly due to the powerfulness
and adaptiveness of the spectral clustering method but also partly
because some tricks used for datasets and parameters tuning [38],
[39].

Model Estimation/Selection based Methods. There are also
some methods which address subspace clustering problem by
explicitly estimating subspace models and assigning data points
to them. The two popular methods for general mixture model
estimation, i.e. Random Sample Consensus (RANSAC) [40] and
Expectation Maximization (EM), have also been used for mixture
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subspace estimation, e.g., Multi-stage Learning (MSL) [41]. Re-
cent progress mainly focuses on developing more robust model
estimation methods, e.g., Median K-flats [42], Ordered Residual
Kernel (ORK) [43], Generalized Projection based M-Estimation
(GpbM) [44], and etc, and more robust model selection methods,
e.g., Agglomerative Lossy Compression (ALC) [45], Uncapacitat-
ed Facility Location [46], [47], [48]. Our framework is of this type
and our main contribution is introducing various unsupervised and
supervised constraints into the model selection framework, which
is demonstrated to beat the state-of-the-art methods on three
popular applications of subspace clustering: motion segmentation,
face clustering and handwritten digit clustering.

3 INTEGER PROGRAMMING FOR SUBSPACE
CLUSTERING

3.1 Subspace Clustering Problem

Given a set of D-dimensional data samples X ∈ RD×N drawn
from a union of K subspaces {Sj}Kj=1 with the dimension of
Sj be rj , the goal of subspace clustering is to recover the K
subspaces {Sj}Kj=1 and to find the relationship between X and
{Sj}Kj=1.

3.2 Mixture of Subspaces

A linear subspace S with dimension r can be represented by a
column orthogonal matrix U ∈ RD×r. Denote the distance from
a data sample x to a subspace model S by d(x, S), where one
popular choice is the L2-Hausdorff distance[14]

dH(x, S) = min
s∈S

∥x− s∥2 = ∥U⊥x∥2, (1)

with U⊥ = I − UUT representing the orthogonal complement
space of S in RD space. Then a data point x belonging to a
subspace S satisfies: d(x, S) = 0.

For a set of noise free data points X drawn from a union
of K subspaces {Sj}Kj=1, given the relationship between X and
{Sj}Kj=1, L ∈ {0, 1}N×K with Lij = 1 indicating the ith point
belongs to the jth subspace, and Lij = 0 otherwise, we have

K∑
j=1

Lijd(xi, Sj) = 0,

s.t.
K∑
j=1

Lij = 1, Lij ∈ {0, 1}.
(2)

3.3 Integer Programming Formulation

In reality, the data points cannot strictly lie on the corresponding
subspaces, and we thus formulate the assignment problem as

min
S,L,K

K∑
j=1

Lijd(xi, Sj),

s.t.
K∑
j=1

Lij = 1, Lij ∈ {0, 1}.
(3)

Considering only the data fitting errors as in eq. (3) would
lead to overfitting, since higher dimensional subspaces or more
subspaces always have lower cost in eq. (3). Hence, an additional
model complexity term Pj is usually preferred, resulting in a
model selection framework as
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Fig. 2. A solution tree with 3 candidate subspaces.

min
L,y,S,K

N∑
i=1

M∑
j=1

Lijd(xi, Sj) + α
M∑
j=1

Pjyj

s.t.
M∑
j=1

Lij = 1, ∀i;yj = max1≤i≤N{Lij}, ∀j;

L ∈ {0, 1}N×M .

(4)

Supposing that somehow we have already obtained a list
of candidate subspace models {S1, . . . , SM}, and the K true
subspaces are contained in the list, we can eliminate the op-
timization variables S and K in eq. (4) and the cost function
becomes linear to L,y. Furthermore, the nonlinear constraints
yj = max1≤i≤N{Lij}, j = 1, . . . ,M can also be converted into
several linear ones:

Lij ≤ yj ,∀i, j. (5)

As a result, we get a binary-integer linear programming prob-
lem as

min
L,y

N∑
i=1

M∑
j=1

Lijd(xi, Sj) + α
M∑
j=1

Pjyj

s.t.
M∑
j=1

Lij = 1,∀i;Lij ≤ yj , ∀i, j;

L ∈ {0, 1}N×M ,y ∈ {0, 1}M×1.

(6)

One can find that eq. (6) is actually the classical uncapacited
facility location problem [49], which has been long studied in
the past fifty years. In this paper, we use the popular branch-
and-bound method [50], [51], [52] for solving (7), which can in
fact achieve the global minimum of the objective function. In the
following, we first present the branch-and-bound method used
for the basic problem (6). Then we show that this method can be
conveniently extended to the problems with additional costs and
constraints.

3.4 Branch-and-Bound Optimization
The components of the branch-and-bound method for solving eq.
(6) are:

• Solution Tree and Branching. Observing that given y fixed,
the optimal values of variables L can be easily found, in this
paper, we use a solution tree related to only variables y (see
Fig. 2 for an example). Each node T represents a solution
set, with each character indicating the state of a candidate.
State “0” means the corresponding candidate abandoned; “1”
represents the candidate adopted; and “X” stands for the
candidate undetermined. For each node, one of the remaining
undetermined candidate subspaces will be selected as the
branching factor.
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• Upper Bound. Denote yub as the solution where all “X”
characters equal 0. We set the upper bound at node T as the
optimal cost when y = yub. The optimal subspace candidate
for point xi is

arg min
{j:yub

j =1}
d(xi,Sj), (7)

and the optimal cost is

JU (T ) =
N∑
i=1

min
{j:yub

j =1}
d(xi,Sj) + α

M∑
j=1

Pjy
ub
j . (8)

When we branch right, the upper bound will remain the
same and we do not need to recompute it.

• Lower Bound. A popular way to compute the lower bound
is to relax the integer constraints and solve the relaxed LP
problem [53]. However, the computational cost would be
high. We use a more efficient way to compute the lower
bound: separate the cost function into the data fitting part
and the model penalty part, and set the lower bound as
the summation of minimal values of the two parts which
are independently optimized. The minimum of the first part
is reached when all undetermined candidate models are
adopted (we denote the corresponding indicator vector by
ylb). The minimum of the second part is obtained when all
undetermined candidate models are abandoned (y = yub).
Hence we get a lower bound as

JL(T ) =
N∑
i=1

min
{j:ylb

j =1}
d(xi, Sj) + α

M∑
j=1

Pjy
ub
j . (9)

When we branch left, the first part of the lower bound will
remain the same and we only need to add a cost αPj to the
parent one.

The branch-and-bound method for subspace clustering is sum-
marized in Algorithm 1. It is trivial to check that: 1) JL(T ) ≤
J ∗(T ) ≤ JU (T ), where J ∗(T ) is the optimal solution at
node T ; and 2) when T is a leaf node, JU (T ) = J ∗(T ).
According to [54], it is guaranteed that Algorithm 1 achieves
global optimization.

3.5 Adaption to Additional Constraints and Costs
Additional priors (such as cluster number, outlier ratio, pairwise
constraint and cluster size) could be encoded as either constraints
or costs into the integer linear programming framework. In
Section 3.4, we have presented an efficient branch-and-bound
method to solve the framework. In this section, we will show that
when the additional constraints are linear in L and the additional
cost is a summation of a linear function w.r.t L and a linear
function w.r.t y, we can always solve the problem by the branch-
and-bound method.

Denote the additional costs by C(L) and C(y), and the two sets
of additional constraints by Ω(L,y) and Θ(y). We can adapt the
branch-and-bound method presented in Section 3.4 to the new
constrained problems as follows.

• Branching and Bounding Strategies. If Θ(y) ̸= ∅, we may
need to modify the branching and bounding strategies. The
solution tree remains the same. When a node is reached, we
verify whether it is a feasible solution (all “X” characters
are replaced by 0), and the upper bounds are computed only
for feasible nodes. Since only a verifying step is needed only
for each node, the constraints Θ(y) can be in arbitrary form.

Algorithm 1 Branch-and-Bound (BB) Method for Subspace
Clustering
Require: Data points X ∈ RD×N , a penalty parameter α

1: Generate a set of M candidate subspace models
{S1, . . . , SM} by a certain scheme, e.g., RANSAC
and over-segmentation (see Section 6.2.3 for details),

2: compute the normalized distance d̂(xi, Sj) between each
point xi and each subspace model Sj ,

3: initialize Ψ as a priority queue with only one element
(T 0,JU (T

0),JL(T
0)) (JU is used as the “priority” mea-

sure), where T 0 is the root node with all candidate models
undetermined (state “X”); JU (T

0) = ∞ and JL(T
0) are the

upper bound and lower bound on T 0, respectively. Set the
initial optimal value as J ∗ = ∞.

4: repeat
5: retrieve the top element (T p,JU (T

p),JL(T
p)) from Ψ by

checking the lowest JU ,
6: if there exist undetermined candidates, branch the node

T p to obtain two child nodes T cl and T cr according to the
fetched undetermined candidate,

7: for two child nodes T cs do
8: compute the upper and lower bounds JU (T

c) (with
solution Lub) and JL(T

c),
9: if JU (T

c) < J ∗, set J ∗ = JU (T
c), y∗ = yub, L∗ =

Lub,
10: if JL(T

c) < J ∗, push (T c,JU (T
c),JL(T

c)) into Ψ,
11: end for
12: pop the element (T p,JU (T

p),JL(T
p)) from Ψ,

13: until no elements in Ψ
14: return y∗, L∗

• Upper Bound. The upper bound at a node is set as the
optimal cost when y = yub. Thus we get an optimization
problem related to only L as

min
L

N∑
i=1

M∑
j=1

Lijd(xi, Sj) + α
M∑
j=1

Pjy
ub
j + C(L) + C(yub)

s.t.
M∑
j=1

Lij = 1,∀i; Ω(L,yub);L ∈ {0, 1}N×M .

(10)
Eq. (10) is an integer linear programming problem. We will
show later that for some specific Cs and Ωs, there exist
efficient algorithms to solve it. An alternative but more
general way is to relax the binary-integer constraints of L
as

0 ≤ L̂ij ≤ 1, ∀i, j. (11)

After relaxation, eq. (10) becomes a linear programming
problem. It can be solved in polynomial time. However,
the relaxed solution may contain non-binary values, and
a rounding step may be needed to convert L̂ into {0, 1}.
Several schemes can be chosen for this purpose [53]. One
choice is: let Lij = 1 if j = arg max

k=1,...,M
{L̂ik}; and Lij = 0

otherwise.
• Lower Bound. The objective function can be separated into

two parts O(L) and O(y). The lower bound is set as the
summation of lower bounds of the two parts. Let Ω(L) be
the maximal subset of Ω(L,y) relating to only L. Then the
minimum of eq. (12) is a lower bound of the minimum of
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the first part:

min
L

O(L)

s.t.
M∑
j=1

Lij = 1, ∀i; Ω(L);L ∈ {0, 1}N×M .
(12)

Since O(y) is linear, the minimum of the second part is
obtained when all undetermined candidate models with neg-
ative cost coefficients are adopted while others abandoned.

4 EXPLOITING UNSUPERVISED CONSTRAINTS
FOR SUBSPACE CLUSTERING

In Section 3, we use an unconstrained subspace model for
subspace clustering. As stated in Section 1, for many real
subspace clustering applications, a constrained subspace model
which assumes that the points are further restricted, is usually
more reasonable. Such restrictions usually come from the nature
of an application and hence are unsupervised.

In this section, we consider two types of unsupervised con-
straints: manifold constraints and spatial regularity constraints.

4.1 Manifold Constraints
The manifold constraints are encoded by defining manifold dis-
tance metrics replacing eq. (1) used in Section 3.2. Here, we take
two popular applications as examples: motion segmentation and
face clustering.

4.1.1 Motion Segmentation
Using different camera models, the manifold constraints are
different. We consider two linear camera models: affine camera
and orthogonal camera.

Let {xfi = (ufi, vfi)
T ∈ R2}i=1,...,N

f=1,...,F be the 2D projections
in F frames of N 3D homogeneous points {Zi ∈ R4}Ni=1 from
a rigid structure. Under the affine camera model, the trajectories
and their 3D points satisfy the following equalities [55],

xfi = AfZi, and (13)

X =

2F×N︷ ︸︸ ︷ x11 . . . x1N

...
. . .

...
xF1 . . . xFN

 =

2F×4︷ ︸︸ ︷ A1

...
AF


4×N︷ ︸︸ ︷ ZT
1
...

ZT
N


T

= MmSm,

(14)

where Af = Kf

[
1 0 0 0
0 1 0 0

] [
Rf tf
0T 1

]
∈ R2×4 is an

affine matrix at frame f , which depends on the camera intrin-
sic parameters Kf and the object pose relative to the camera
(Rf , tf ).

• Subspace Model. Eq. (14) indicates that

rank(X) ≤ 4. (15)

Eq. (15) assumes that trajectories from the same rigid motion
lie in a linear subspace of R2F with dimension no more than
4. Given a set of trajectories X , a subspace model S can be
represented by U ∈ R2F×r, r ≤ 4 from truncated SVD of
X: X = UΣV T . The distance between a trajectory x and
the subspace model is computed as eq. (1).

• Affine Model. Averaging the columns of X and S in eq. (14),
we get

X = MmSm. (16)

Then we have

X −X = Mm(Sm − Sm). (17)

Since the last row of Sm−Sm is all-zero, the dimension of
X −X will be no more than 3. Given a set of trajectories
X , an affine model S can be represented by {U, r ≤ 3, X},
where U ∈ R2F×r is from the truncated SVD of X − X:
X −X = UΣV T . The distance between a trajectory x and
the subspace model is defined as

d(x, S) = ∥U⊥(x−X)∥2. (18)

• Metric Model. Under an orthogonal camera model, Âf , the
first 3 columns of Af , should further satisfy the metric
constraints

Âf Â
T
f = sfI, (19)

where I is the identity matrix of size 2×2, and sf is a scale
factor. Thus a motion model can be represented by {M̂m ∈
R2F×3, X}, where M̂m = (Â1, . . . , ÂF )

T . Given a set of
trajectories X , there have been several methods to recover
the motion and shape, e.g., [56], [57]. Then the distance
between a trajectory x and the subspace model is defined as

d(x, S) = ∥(x−X)− M̂m(M̂m
T
M̂m)−1M̂m

T
(x−X)∥2.

(20)

4.1.2 Face Clustering
The image brightness given varying illumination could be ap-
proximated in a bilinear form [58], [16]. Assuming the absence
of all shadows, given a set of images of a Lambertian object with
varying illumination, the brightness at pixel i for the jth image
can be modeled as,

Xij=lTj ρi(1, z
T
i )

T
, (21)

where l ∈ R4 is the lighting directions; ρ is the albedo; and
z ∈ R3 is the dense normal to the surface of the object. Written
in matrix form, we get

X =

 ρ1
[
1 zT1

]
...

ρD
[
1 zTD

]
 [

l1 · · · lN
]
= SfMf . (22)

• Rank-4 Subspace Model. Eq. (22) indicates that X lies on a
linear subspace with dimension no more than 4.

• Metric Model. z further satisfies constraints

z · zT = 1, (23)

and several methods have been proposed to recover the shape
Ŝf from X , e.g., [57]. We could define the distance between
an image instance x and the manifold model as

d(x, S) = ∥x− Ŝf (Ŝf
T
Ŝf )−1Ŝf

T
x∥2. (24)

• Rank-9 Subspace Model. In the presence of both attached and
cast shadows, the above models will be inaccurate. Lee et
al. [17] have argued that the shadows can be approximately
counted by a rank-9 subspace model. We will try this kind
of model as well.

Optimization. The manifold constraint affects only the compu-
tations of eq. (1) and eq. (39). Other steps in Section 3.4 remain
the same.
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4.2 Spatial Regularity Constraints
The spatial regularity constraints penalize the changes of cluster
labels between spatially close points. We encode this constraint
by adding a penalty term Jsp to the cost function of eq. (6) as

Jsp =
N∑
i=1

N∑
j∈N (i)

β
M∑
k=1

|Lik − Ljk|, (25)

where N (i) indicates the neighboring set of point i (by Euclidean
distance of feature vectors); β is the cost of two points belonging
to different clusters.

There are absolute operators in Jsp. To avoid them, we replace

each
M∑
k=1

|Lik − Ljk| as follows,

M∑
k=1

|Lik − Ljk| = 1−
M∑
k=1

Lik,jk,

M∑
k=1

Lik,jm = Ljm,m = 1, . . . ,M,

M∑
m=1

Lik,jm = Lik, k = 1, . . . ,M,Lik,jm ∈ {0, 1},

(26)

where Lik,jm is an auxiliary binary variable indicating whether
simultaneously point i belongs to candidate model k and point j
belongs to candidate model m.
Optimization. There are NspM

2 additional auxiliary variables
and 2NspM additional equality constraints, where Nsp is the
number of neighboring pairs. In addition, the coefficient matrix
in the constraints is very sparse, resulting in affordable time and
space complexity when using the general method presented in
Section 3.5. When there are no other constraints, e.g. the ones
described in Section 5.2 and Section 5.4, the problems of eq. (10)
and eq. (12) are actually Markov Random Field (MRF) problems.
As a result, we can utilize more efficient algorithms, e.g., the
Primal-Dual solver introduced in [59].

5 EXPLOITING SUPERVISED CONSTRAINTS FOR
SUBSPACE CLUSTERING

Subspace clustering is hard to be perfectly solved due to noises,
outliers, partially dependent subspaces, and semantic gap between
low-level observations and high-level concepts. In the more
general unsupervised learning domain, it has been shown that
high-level supervised information is a key road to correct the
errors [19]. In this section, we will encode several common types
of supervised constraints.

5.1 Subspace Number Priors
Although the previous framework is capable of automatically
determining the number of subspacesclusters, it benefits from the
prior knowledge of subspace number.

Our framework can conveniently incorporate various priors
about subspace number by adding the following constraint to the
proposed framework:

M∑
j=1

yj < (≤,=,≥, or >)K, (27)

where K is a given prior on the subspace number.
Optimization. Only the branching and bounding strategies com-
ponent in Section 3.5 needs to be modified when subspace
number priors are added. Apart from the strategies in Section

3.5, some other strategies are incorporated to further reduce the
computational cost:

• the case of “<” (or “≤”). The descendants of the node
where the number of adopted candidate models is K−1 (or
K) are removed from the original solution tree;

• the case of “=”. The descendants of the node where the
number of adopted candidate models is K or the number of
abandoned candidate models is M−K are removed from the
original solution tree. The model penalty part of the lower
bound is set as summation of the minimal K model penalties
including the adopted ones;

• the case of “>” (or “≥”). The descendants of the node
where the number of abandoned candidate models is M −
K − 1 (or M −K) are removed from the original solution
tree. The model penalty part of the lower bound is set as
summation of the minimal K model penalties including the
adopted ones.

5.2 Outlier Ratio Priors

In reality, the obtained data is usually contaminated with noises
and errors. We will show in this subsection that the proposed
framework could be easily adapted to outlying data.

We add a virtual subspace model So into the candidate list,
which is supposed to cover the outliers. All the points has equal
costs to this virtual model: d(xi, S

o) ≡ Co. One can decrease or
increase Co to find more or less outliers.

The outliers finding process can be more accurate when the
outlier ratio is known as a priori. We encode the outlier ratio
priors by adding a new constraint to the proposed framework:

N∑
i=1

oi ≤ γN, (28)

where oi is an indicator specifying whether point i is an outlier,
and γ indicates the maximal outlier ratio. Then we get an
optimization problem as

min
L,y,o

N∑
i=1

(
M∑
j=1

Lijd(xi, Sj) + oid(xi, S
o) + α

M∑
j=1

Pjyj

s.t.
M∑
j=1

Lij + oi = 1,∀i;Lij ≤ yj , ∀i, j;
N∑
i=1

oi ≤ γN ;

L ∈ {0, 1}N×M ,o ∈ {0, 1}N×1,y ∈ {0, 1}M×1.
(29)

With prior in eq. (28), we can set d(xi, S
o) as a small value near

infenitesimal, i.e., −104.
Optimization. The number of additional variables and constraints
are N and 1, respectively. By replacing L with an augmented
matrix [L o], the method in Section 3.5 can be used to solve the
new problem. When optimizing eq. (10) and eq. (12), there exists
a more efficient algorithm: all points are firstly categorized to the
subspace with minimum fitting cost, and then γN points with
maximal minimum fitting costs are re-categorized as outliers.

5.3 Pairwise Constraints

Pairwise constraint is one of the most popular supervised informa-
tion used for constrained clustering [19], [20]. It specifies whether
two points belong to a same cluster or not, referred to as must-link
constraint and cannot-link constraint respectively. We can encode
the must-link and cannot-link constraints between point i and j
by introducing linear equalities eq. (30) and eq. (31), respectively.
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Lik − Ljk = 0, k = 1, . . . ,M. (30)

M∑
k=1

|Lik − Ljk| = 1. (31)

The equality constraints are equivalent to adding the following
additional costs,

Jpc =
∑

i,j:(i,j)∈PL

γ(i,j)

M∑
k=1

|Lik − Ljk|, (32)

where PL is the set of point pairs with pairwise priors; γ(i,j)
specifies the degree of penalty on constraint (i, j) and we set
γ(i,j) = 104 when (i, j) is a must-link constraint and γ(i,j) =
−104 when (i, j) is a cannot-link one.

In practice, it has been pointed out that enforcing only sparse
pairwise constraints usually results in unsmooth solutions [19].
Hence, we advocate an additional regularity term to enforce the
smoothness of the solution, e.g., the spatial regularity constraints
presented in Section 4.2 or the regularity defined by other
similarity matrices [29], [12].
Optimization. There are NpcM

2 additional auxiliary variables
and 2NpcM equality constraints, where Npc is the number of
pairwise constraints. One can find that eq. (32) has the same
form as the spatial regularity cost in eq. (25), and hence eq.
(10) and eq. (12) are also MRF problems. When there exist
cannot-link constraints, the corresponding pairwise terms become
non-submodular [60], and some solvers are available to optimize
the problems, e.g., Quadratic Pseudo-Boolean Optimization with
Probing (QPBOP) [60].

5.4 Size Priors

Another significant supervised constraint is the size prior [61].
Possible size priors include: (1) the sizes of all clusters are no
greater (or no smaller) than Z; (2) the size of cluster containing
point i is no greater (or no smaller) than Z; (3) the size of cluster
containing point i is no greater (or no smaller) than the size of
cluster containing point j at a multiple of Z.

We encode the first type of priors by a set of inequality
constraints linear in L. For “no greater” case, the constraints are

yk

N∑
i=1

Lik ≤ Z, k = 1, . . . ,M. (33)

For “no smaller” case, the constraints are

N∑
i=1

Lik ≥ Zyk, k = 1, . . . ,M. (34)

The size of a cluster related to point i could be calculated as,

N∑
j=1

(1−
M∑
k=1

|Ljk − Lik|). (35)

Therefore, the second and third type of priors could be encoded
by

N∑
j=1

(1−
M∑
k=1

|Ljk − Lik|) ≤ (≥)Z, (36)

and
N∑

p=1

(1−
M∑
k=1

|Lpk − Lik|) ≤ (≥)Z

N∑
q=1

(1−
M∑

m=1

|Lqm − Ljm|),

(37)
respectively, which can be further converted into linear constraints
by the method presented in Section 5.3.
Optimization. Since all the introduced constraints are linear in
L and the auxiliary variables, the method in Section 3.5 can be
used to solve the new optimization problem. For the three types of
priors, the numbers of additional auxiliary variables are 0, NM2

and 2NM2, respectively. The number of additional constraints
are M , 2MN + 1, and 4MN + 1, respectively. Eq. (10) and eq.
(12) are optimized by the standard linear programming solver,
e.g., MOSEK [62].

6 EXPERIMENTS
In this section, we evaluate the proposed method (referred to as B-
B) on three real-world applications of subspace clustering: motion
segmentation, face clustering and handwritten digit clustering. A-
part from comparing with the state-of-the-art methods on accuracy
and efficiency, we also show the effectiveness of applying the
proposed BB method to several supervised constraints.

6.1 Experimental Data and Evaluation Metrics
6.1.1 Experimental Data
We use three datasets for experiments: Hopkins155 [15], Ex-
tended Yale Face B [16], [17] and USPS [18], which are the
most popular benchmark datasets used in literatures for evaluating
subspace clustering algorithms [7].

Hopkins155 [15] is a motion segmentation dataset, composed
by 155 video sequences with extracted feature points and their
tracks across frames. Each video has 2 or 3 motions and the
motions may be degenerate or partially dependent with each other,
which act as big challenges for segmentation algorithms. Some
sample videos with trajectories on them are shown in Fig. 3(a).

Extended Yale Face B [16], [17] is a face clustering dataset,
which consists of 192 × 168 pixel cropped face images under
varying poses and illuminations from 38 human subjects. We
use all the 64 frontal face images per subject for experiment,
and resize the images to 48 × 42 for efficiency. Note that We
use the cropped images instead of original ones to ease the
effect of backgrounds, to avoid overestimating the performance
of clustering algorithms [7]. Fig. 3(b) shows some sample images
of the dataset.

USPS [18] is a handwritten digit dataset of 9298 images, with
each image having 16 × 16 pixels. We use the first 100 images
of each digit for experiments. Fig. 3(c) shows some sample digit
images.

6.1.2 Evaluation Metrics
We evaluate the proposed algorithms using clustering accuracy
and efficiency. The same as in most literatures, we use clustering
error (CE) to measure the accuracy [15], [7]:

CE = 1− 1

N

N∑
i=1

δ(pi,map(qi)), (38)

where qi, pi represent the output label and the ground truth one
of the ith point; δ(x, y) = 1 if x = y, and δ(x, y) = 0 otherwise;
map(qi) is the best mapping function that permutes clustering
labels to match the ground truth labels and can be computed by
the Kuhn-Munkres algorithm [63].
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Fig. 3. Samples from the three benchmark datasets, Hop-
kins155 (top), Extended Yale Face B (middle) and USPS
(bottom).

6.2 Details of Our Method

In the following, we describe the details of applying the proposed
method to motion segmentation, face clustering and handwritten
digit clustering problems, including distance measure, exploited
unsupervised constraints, model generation and penalty terms.

6.2.1 Distance Measure
To make the point-to-model distances of candidate models with
different ranks and point lengths defined in a same scale, we do
not directly use the popular L2-Haussdorf distance as in eq. (1),
but use the normalized distance by introducing the rank-depended
noise level of candidate models, σ(rj),

dN (xi, Sj) = − ln
1

σ(rj)
exp(−d2H(xi, Sj)

2σ2
(rj)

) =
d2H(xi, Sj)

2σ2
(rj)

+lnσ(rj),

(39)
where σ(rj) is estimated in the following way: first the standard
deviation of each candidate model is estimated according to the
supported points, and then for each subspace rank, the median of
the K minimal deviations is selected as the estimated noise level.

The Gaussian normalization not only makes the point-to-model
distances of candidate models with different ranks defined in
the same scale, which benefits the subspace clustering, but it
also normalizes the distances of different subspace clustering
instances into a similar scale, such that the parameter settings
across different instances can be shared.

6.2.2 Exploited unsupervised constraints
For motion segmentation problem, both manifold constraints and
spatial regularity constraints are incorporated. For face cluster-
ing problem, there are no improvements by introducing spatial
regularity constraints and hence we exploit only the manifold
constraints. For handwritten digit clustering problem, we consider
only spatial regularity constraints.

6.2.3 Model generation
We consider two types of methods to generate initial candidate
models: over-segmentation and randomized local models (RLM).
We first use the existing subspace clustering algorithms, e.g.,
angle similarity based clustering (ASC) and LRR [12], to achieve

over-segmentation2. Then the points in each over-segment are
used as support points to compute candidate models. Randomized
local models are computed by initially sampling M ≪ N random
points, and then forming the models around each of these points
and their (P − 1)-nearest neighbors in the ambient Euclidean
distance.

We try subspace, affine and metric models for motion seg-
mentation problem, and try rank-4 subspace, rank-9 subspace
and metric models for face clustering problem. For handwritten
digit clustering problem, we use subspace models with rank
varying from 5 to 15. Since degenerations are common in motion
segmentation, we also generate degenerated models, i.e. rank-2
affine models or rank-3 subspace models. For face clustering and
handwritten digit clustering, we compute fixed-rank models. All
the subspace and affine models are computed by singular value
decomposition (SVD). The metric models for motion segmenta-
tion and face clustering are both computed by the methods in
[57].

6.2.4 Penalty terms

We consider two types of penalties for candidate models: model
complexity and model uncertainty. We use geometric Akainke in-
formation criterion (G-AIC) [64], [65] to count model complexity
and use the ratio of standard variation computed by the estimated
inliers, e.g. TSSE-estimator [66], σ̃, to the one by the support
points, σ, to count model uncertainty. The total penalty is:

Pj = (rj +
2σ̃j

σj
) · (N +D − rj). (40)

6.3 Baseline Algorithms

To the present, spectral clustering based algorithms perform as
the state-of-the-art. We compare our BB algorithm with these
algorithms, including ASC, LSA [27], SCC [28], SBLF [32], SSC
[29], [67], LRR [12], LRR-PP [10], LatLRR [68], SSQP [33],
LSR [8], NLS [69] and DiSC [34]. The results of GPCA [24] is
also listed.

We also compare our BB algorithm with the mixture-model
based methods, including RANSAC [40], MSL [41], ALC [45],
ORK [43] and GpbM [44]. Since ORK [43] and GpbM [44]
cannot utilize cluster number constraints, we report clustering
errors without number constraints when comparing with these two
methods. For comparison with other methods, we report clustering
errors with number constraints.

Furthermore, our BB algorithm can be regarded as exploiting
additional nonlinear structures contained in the original subspace.
Hence we also do comparison with several manifold clustering
methods, e.g. LLMC [70] and SMCE [71].

For all algorithms except ASC, we report results from the
corresponding literatures or by running the codes provided by the
authors (the parameters are chosen by grid searching). For SSC,
we use the ADMM version3 if the corresponding number is not
reported in the paper. For ASC, we use our own implementation.

2. ASC and LRR are both spectral clustering based methods. The over-
segmentation is obtained by setting cluster number larger than the ground truth
one in the spectral clustering step.

3. http://www.cis.jhu.edu/∼ehsan/Codes/SSC ADMM v1.1.zip
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TABLE 1
Clustering errors (CE) of mixture model based methods on

Hopkins155 datasets with known motion number, where
“ave.” stands for “average”, and “med.” stands for “median”.

The parameters used by BB are: α = 0.1; β = 500; 4-nn.
These settings are also used in Table 2 and Table 4.

method RANSAC MSL ALC BB BB
(RLM) (os-LRR)

ave. (%) 9.76 5.06 3.37 2.45 0.63
med. (%) 3.21 0 0.49 0 0

TABLE 2
Comparison to the algebraic methods and spectral

clustering based methods on Hopkins155 datasets with
known motion number.

method ASC GPCA LSA SLBF
ave. (%) 26.14 10.34 4.94 1.35
med. (%) 27.24 2.54 0.90 0
method SC SCC SSC LRR
ave. (%) 1.20 2.70 1.25 4.31
med. (%) 0 0 0 0
method LRR-PP LatLRR SSQP NLS
ave. (%) 1.59 0.85 1.49 0.76
med. (%) 0 0 0 0

method LSR DiSC BB BB
(os-ASC) (os-LRR)

ave. (%) 3.32 1.25 5.96 0.63
med. (%) 0 0 0 0

TABLE 3
Clustering errors (CE) on Hopkins155 datasets with

unknown motion number. The parameters used by BB are:
α = 0.4; β = 500; 4-nn.

method ORK GpbM BB (os-LRR)
ave. (%) 8.91 7.44 6.09
med. (%) - - 0

TABLE 4
Comparison of the BB method to the manifold clustering

methods on Hopkins155 datasets using CE.

method LLMC SMCE BB (os-LRR)
ave. (%) 4.87 13.34 0.63
med. (%) 0 9.97 0

6.4 Motion Segmentation Results

6.4.1 Parameter Settings
We use affine models to indicate motions, and generate candidate
models by two kinds of strategies: randomized local models
(RLM) and over-segmentation (using LRR and ASC, referred to
as os-LRR and os-ASC respectively). For RLM, we generate 24
candidate models and the reported numbers are averaged over
10 trials. For os-ASC and os-LRR, we generate K + 2 rank-2
candidates and K + 2 rank-3 candidates by over-segmentation.
For all the variants4 and all the sequences in Hopkins155 dataset,
we set α = 0.1 and use the same spatial regularities: N (i)

4. An exception is the experiments of Table 3 and Table 6 where the motion
number is unknown. In these experiments, the parameters are: α = 0.4, β = 500
and 4-nn.
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Fig. 4. The influence of parameter α on performance of
motion segmentation with known motion number and con-
stant spatial regularity as: N (i) corresponds to the 4-nearest
neighbors of point i and β = 500. (a) plots the average CE
for all sequences in Hopkins155 datasets; (b) shows the CE
on three sequences: 66, 131 and 155.

corresponds to the 4-nearest neighbors of point i and β = 5005.
For all baseline algorithms except ASC and SMCE, we report

the results listed in the corresponding literatures. For SMCE, we
use the code provided by the authors and choose the parameters
by grid searching, i.e., k ∈ 2 : 2 : 50 and λ ∈ 2−10:10. The best
parameters for SMCE are k = 10, λ = 2−7.

6.4.2 Segmentation Accuracy
We compare the BB method in this paper to the mixture model
based and the other types of methods using CE as listed in Table
1 and Table 2, respectively, assuming that the motion number is
known as a priori. It can be seen that our methods with both model
generation strategies outperform all the mixture model based ones
significantly in clustering accuracy. Compared to the algebraic
methods and spectral clustering based methods, our method with
os-LRR still performs the best and the RLM variant is comparable
to them. Note that even when the generated models are poor, e.g.,
using os-ASC, our method still produces good results. We also
compare BB to ORK [43] and GpbM [44] which cannot utilize
cluster number constraints (see Table 3). Without motion number
prior, BB performs the best too.

We also compare BB to the state-of-the-art manifold clustering
methods, e.g. LLMC [70] and SMCE [71] in Table 4. Similar as
our spatial regularity constraints, LLMC and SMCE also consider
the spatial information but encode it in a different way that
spatially distant points are assigned very small or even zero
affinities. BB performs much better than these methods probably
because: 1) BB encodes both the manifold constraints and the
global subspace structure, while LLMC and SMCE model the
data purely as nonlinear manifolds; 2) LLMC and SMCE cut the
connections between distant points which may break the graph
connectivity of a same subspace. The BB method encodes spatial
information by penalizing the discontinuity of labels, making it
immune to such problem.

6.4.3 The Influence of Parameter α
The parameter α is used to balance the data fitting term and
the model penalty term. When the motion number is known as
a priori, this balancing influences only the selection of good
candidate models; with motion number unknown, the balancing
also influences the choice of motion number. In this part, we
investigate only the case of known motion number. Generally

5. When the cluster number is known as a priori, large β may lead to cluster
number reduction in the final clustering. To avoid such case, we reduce β by a
factor of 0.5 until the cluster number constraint is satisfied.
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TABLE 5
Average clustering errors (CE) on Hopkins155 datasets

using different models. All candidate models are generated
using os-LRR strategy.

model type affine subspace metric
rank 2 and 3 3 3 and 4 4 4

CE (%) 0.63 2.25 2.14 2.30 3.02

(a) (b)
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Fig. 5. The influence of spatial regularity parameters (β and
N (i)) on performance of motion segmentation with known
motion number.

TABLE 6
Accuracy of motion number estimation on Hopkins155

datasets. The parameters of BB are: α = 0.4, β = 500, 4-nn.

method RD ORK KO BB
(os-LRR)

correct (%) 62.58 65.80 74.84 80.00

speaking, the choice of parameter α depends on the powerfulness
of data fitting and prior knowledge in telling good and bad
candidate models apart (see Fig. 4(b)): when the data fitting part is
more powerful, smaller α is preferred, e.g., Sequence 155; when
the prior knowledge part is more powerful, larger α is better, e.g.,
Sequence 66; when both are good, we could choose α arbitrarily,
e.g., Sequence 131.

Fig. 4(a) shows the segmentation results over all 155 sequences
in Hopkins155 datasets: while α ranges from 0.001 to 0.15,
the segmentation errors, CE remain almost unchanged, slightly
varying from 0.63% to 1.03%; when α increases from 0.15 to
0.4, the CE rise up rapidly to 1.75%. These results advocate a
balanced combination of the data fitting and model penalty terms.

6.4.4 The Effect of Unsupervised Constraints

We investigate the effects of two kinds of unsupervised con-
straints: manifold constraint and spatial regularity constraint.

The manifold constraints take affects at the model generation
stage. We compare the segmentation results using different mani-
fold constraints, as listed in Table 5. It can be seen that the affine
models work better than the original subspace models, maybe
due to its more accurate representation. But the metric models
perform worst. This phenomenon is probably due to the following
two reasons. First, degenerated data, very common in Hopkins155
datasets, usually leads to poor metric model fitting results. Sec-
ond, the depth ranges for some sequences in Hopkins155 datasets
are very big, making the orthogonal assumption invalid.

To evaluate the effect of spatial regularity constraints, we draw
the CE curves with varying β and N (i) as shown in Fig. 5.
We observe an improvement of CE from 2.66% to 0.63% (β =
0 indicates that no spatial regularity is included). However, too
much spatial smooth may harm the segmentation.
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datasets.

TABLE 7
Comparison of uncapacitated facility location methods on
Hopkins155 datasets when no constraints (except motion

number prior) are exploited.

method LP Relaxation [72] Message Passing [47] BB
CE (%) 2.75 2.85 2.66
time (s) 6.81 0.035 0.060

6.4.5 Comparison with Other Uncapacitated Facility Loca-
tion Methods
We compare the branch and bound method with the linear pro-
gramming relaxation [72] and the message passing method [47]6

in order to solve the problem in (6). Table 7 shows the clustering
errors and the computational time of different algorithms. It can
be seen that BB produces the lowest clustering error thanks to
its global optimality. The BB is more efficient than LP relaxation
but less efficient than message passing method.

6.4.6 Motion Number Estimation
Our BB method can automatically determine the motion number
by searching through all the solution space. Table 6 shows
the results of BB on motion number estimation compared with
existing methods, i.e. rank detection (RD) [65], ordered residual
kernel (ORK) [43] and Kernel Optimization (KO) [73]. We
correctly predict the true motion numbers on 124 sequences, by
using os-LRR to generate the candidate models (the candidate
number is set constant as 10) and choosing parameters: α = 0.4;
N (i) corresponds to the 4-nearest neighbors of point i; β = 500.
It can be seen that the BB method performs the best among these
methods.

6.4.7 Computational Efficiency
We ran all the experiments on a PC with a 2.53GHz CPU.
The average computational time7 as well as the number and
proportion8 of exploited nodes for each sequence as a function
of the number of candidate models are shown in Fig. 6. It can
be seen that the proportion of exploited nodes is very small,

6. The heuristic method in [46] is used to enforce the motion number con-
straints.

7. In this test, we use RLM to generate candidate models. The cluster number
is unknown and the spatial regularity constraint is involved. Also note that the
time of candidate model generation is excluded, because it relies on the adopted
strategies.

8. The proportion is computed by #exploited nodes
2M

, where M is the number of
candidate models.
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Fig. 7. The average clustering error (CE) with error bars
of different methods on Extended Yale Face B dataset. For
all variants of BB, α = 0.04 and no spatial regularity is
involved. For other methods, the parameters are chosen by
grid searching.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

Parameter α

C
E

 

 

subject number =4

subject number =8

subject number =12

subject number =16
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and it dramatically drops when the number of candidate models
increases.

For the experiments in Table 2, “BB (os-LRR)” takes only 0.23
seconds for each sequence on average, mainly due to the reduction
of searching space thanks to the known cluster number. When
no spatial regularity constraints are incorporated, the average
computational time is further reduced to 0.06 seconds.

Nevertheless, it is worth noting that in our experiments, the
number of candidate model is small, in which case our method
has a reasonable computational time. However, as Figure 6 shows
the computational complexity of our method is approximately
exponential in the number of candidates models. In fact, our
method becomes inefficient when the number of candidate models
is more than about 50. In order to utilize our method for such
cases, one possible way is to first discard bad candidates by some
simpler strategies and then input the remaining candidates into our
method for global model selection. Another direction is to develop
approximate but more efficient method for the optimization. These
will be our future directions.

6.5 Face Clustering Results
To evaluate the performance of different methods, we form 8
tasks with varying subject numbers, {2, 4, 6, 8, 10, 12, 14, 16}.
Each task is repeated 10 times, containing images from randomly
picked subjects. For the BB method, we generate 1.5K candidate
models by over-segmentation of LRR [12] and try the rank-4
subspace, rank-9 subspace and metric model. The CE curves of
different methods are shown in Fig. 7. BB with rank-9 model
outperforms all the other methods, and its variants using metric

TABLE 8
Clustering errors (CE) and the corresponding parameters

on USPS dataset. In our method, the parameters are
α = 0.001, β = 32 and N (i) corresponding to 4-nn of point i.

method ALC SSC LRR LSR BB
(rank-10)

CE (%) 71.50 32.10 22.60 26.10 12.60
para. - λ = 2−6 λ = 2−14 λ = 27 -
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Fig. 10. The clustering error (CE) on USPS dataset with
varying parameters. (a) α = 0.001, β = 32, 4-nn, model rank
varies; (b) α = 0.001, 10-rank models, 4-nn, β varies.

and rank-4 models achieves comparable results with the state-of-
the-arts. Also note that all variants of our BB methods use LRR
as an initial step to get the model candidates and they all perform
much better than the pure LRR method, which demonstrates the
advantages of incorporating additional unsupervised constraints
by our methods, e.g., the explicit physical models and the model
penalties.

We also investigate the effect of parameter α on the perfor-
mance of face clustering as shown in Fig. 8. It can be seen:
when subject number is small, the data fitting term alone is good
enough to select good candidates; when subject number grows
bigger, the prior knowledge on models will be indispensable to
achieve good clustering.

The computation is also very efficient that the branch and
bound optimization takes only 1.9 seconds excluding the can-
didate model generation step.

6.6 Handwritten Digit Clustering Results
We generate 1.5K = 15 candidate models by over-segmentation
of LRR [12]. Different from rigid motions and faces under varying
illuminations where the knowledge about model rank is clear from
the physical view, the handwritten digits do not have such clear
physical knowledge on the model rank. Hence we try subspace
models with rank from 5-15.

Table 8 lists the CE of the BB method compared with the state-
of-the-art ones. It can be seen that the BB method outperforms
the other ones significantly. The CE curves with varying model
ranks and the spatial regularity parameter β are shown in Figure
10. We can see: 1) models with rank from 10 to 15 all work well
on the USPS dataset; 2) the clustering performance is significantly
improved by incorporating spatial regularities.

The branch and bound optimization takes 33.0s to get the
results.

6.7 Incorporating Supervised Information
In Section 5, we have successfully encoded four types of su-
pervised constraints: subspace number prior, outlier ratio prior,
pairwise constraints and size prior.
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Fig. 9. ROC curves for outlier detection on four real motion sequences. Note that for ALC-o, there are no tuning parameters
available to get a whole ROC curve.

TABLE 9
CE (%) on 4 motion sequences with real outliers.

seq. ALC-o LRR-o BB-o
books 27.14 20.79 0

carbus3 0 4.32 0
carsTurning 10.35 41.15 2.32

nrbooks3 23.58 1.32 0

In the experiments described in Section 6.4, 6.5 and 6.6,
subspace number prior has already been used. In this section,
we will test the effectiveness of our algorithm in encoding three
other types of supervised constraints. We use the same parameter
settings as in the unsupervised cases: for motion segmentation,
α = 0.1, β = 500, 4-nn; for face clustering, α = 0.04, β = 0;
for digit clustering, α = 0.001, β = 32, 4-nn.

6.7.1 Clustering with outliers
We apply the BB algorithm to four motion sequences with real
outlying trajectories [45], books, carbus3, carsTurning and nr-
books3. The trajectories were obtained with an automatic tracker,
and the ground-truth segmentation was manually determined. A
trajectory was labeled as an inlier if it is correctly tracked in all
frames, and an outlier if it is incorrectly tracked.

We use receiver operating characteristic (ROC) curve to e-
valuate the performance of outlier detection, where “positive”
and “negative” correspond to outliers and inliers, respectively.
The segmentation accuracies are also computed. We compare our
method (referred to as BB-o) to two baselines: a) ALC-o [45].
A sample is an outlier if it belongs to a cluster with less than
5 samples after running ALC; b) LRR-o [10]. The sample is
predicted as an outlier if the 2-norm of its corresponding column
in the error matrix E of LRR is larger than a preset threshold. For
our BB-o method, the RLM strategy is used to generate initial
candidate models, and the ROC curves are obtained by varying
Co.

Fig. 9 shows the ROC curves for different algorithms. Table
9 lists the segmentation accuracies of different algorithms9. It
can be seen that BB-o performs better than ALC-o and LRR-
o in terms of both outlier detection and segmentation. The
big gap of BB-o and the other ones in segmentation accuracy
may be due to the following reason: for ALC-o and LRR-o,
the segmentation relies so heavily on the relationship between
samples that the wrongly retained outliers will seriously affect
the final results; for BB-o, the relationship between samples and

9. Trajectories labeled and predicted as inliers both are included when we
compute the CE. For LRR-o, the reported numbers are under parameters when
the predicted outlier ratio equals the real one. For our method, we use the real
outlier ratio as a priori and achieve segmentation by solving eq. (29).

(a) (b)

Fig. 11. Segmentation using pairwise constraints on
1R2RCT B (top) and 2T3RCRT (bottom) sequences in
Hopkins155 dataset. Different colors of trajectories indicate
different segments. (a) The sample frames and the segmen-
tation results without pairwise constraints. (b) The segmen-
tation results using pairwise constraints. The yellow dotted
lines on the ends represent cannot-link constraints between
the two points marked by circles and the magenta solid ones
represent must-link constraints.

models is the dominant factor in the segmentation stage, resulting
in its robustness to outliers.

6.7.2 Pairwise constraints
Pairwise constraints can be obtained by either human labeling or
prior knowledge, e.g., the trajectories near the corners of a video
usually belong to background. We choose the sequences where
the BB method (unsupervised) makes errors, e.g., the 1R2RCT B
with CE=3.55% and 2T3RCRT with CE=9.58% as shown in Fig.
11, to do the experiments. By manually selecting one or several
pairs of points, our method successfully corrects the errors.

6.7.3 Size priors
We demonstrate the effectiveness of our method in encoding the
size priors by three experiments. Firstly, we test the encoding of
the first size prior type: all the cluster sizes equal a number, e.g.
64 for the Extended Yale Face B dataset and 100 for the USPS
dataset. By adding this knowledge, the face clustering accuracies
are improved as shown in Fig. 12. For the USPS dataset, we also
observe an improvement of CE from 11.80% to 8.80%.

Then we verify the other two types of size priors: the size of
cluster containing point i is no smaller than Z; the size of cluster
containing point i is no smaller than the size of cluster containing
point j at a multiple of Z. The values of Z are assigned from the
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Fig. 12. The improvements of face clustering by adding
equal size priors (rank-9 subspace model).

(a) (b)

Fig. 13. Segmentation using size priors on 1RT2RTCRT B
sequence in Hopkins155 dataset. (a) The sample frames
and the segmentation results using the “BB (os-LRR)”
method in Table 2. (b) The segmentation results using two
types of size priors separately. Note both settings produce
the same segments, and therefore, only one image is drawn
for each sequence to stand for both results.

ground truths. We correct the errors for 1RT2RTCRT B sequence
after encoding the size priors as shown in Fig. 13.

6.7.4 Computational and Memory Costs
Table 10 lists the computational times and the peak memory10

for different variants of the BB algorithm using the 2T3RCRT
sequence in Hopkins155 datasets. The 2T3RCRT sequence con-
sists of 543 29-frame trajectories and has 3 motions. In the
experiments, we set the parameters the same as in Section 6.4.1.
For the experiments encoding pairwise constraints, we use 1
must-link and 1 cannot-link constraints. For MRF optimization,
the primal-dual solver [59] is used when the energy function is
submodular and the QPBOP solver [60] is used when the energy
function is non-submodular. For Linear programming, we use
the mosek solver [62]. Observing that usually 1∼100 seconds
are needed for over-segmentation methods, e.g. LRR, to generate
initial candidate models, the computational times by our branch-
and-bound optimization are very reasonable.

7 CONCLUSIONS
In subspace clustering, nearly all existing algorithms use uncon-
strained subspace models, meaning the points can be drawn from
everywhere of a subspace, to describe the data, which usually
produce poor results when severe noises, outliers or partially
dependent subspaces exist. In this paper, we have proposed the
alternative constrained subspace model for subspace clustering
and instantiated it by several unsupervised and supervised con-
straints. We used a unified integer linear programming optimiza-
tion framework for all the constraints. Applying the proposed

10. Both the computational times and peak memory are evaluated by the profiler
tool in Matlab.

TABLE 10
Computational times (seconds) and peak memory (Mb)

under different constraints for motion segmentation of the
2T3RCRT sequence. “s.r.” stands for “spatial regularity”;
“p.w.” stands for “pairwise constraints”; and “size{1,2,3}”

represent the three types of size priors.

basic outlier p.w. size1 size2 size3

-s.r. time 0.1 0.1 0.4 7.6 17.3 18.0
memory 0.8 0.8 0.8 7.8 9.8 13.6

+s.r. time 0.5 11.0 92.5 16.0 30.3 31.4
memory 1.0 7.8 1.0 10.7 16.7 22.2

method with manifold and spatial regularity constraints to two
popular applications of subspace clustering, motion segmentation
and face clustering, we achieve much better performance than
the state-of-the-art. We have also shown the effectiveness of the
proposed framework in exploiting various supervised constraints.

The main limitation of our method is the high computational
complexity when the number of candidate models is large.
Although it can be alleviated by pre-discarding bad candidates
using some simpler strategies, a better way is to develop more
efficient algorithms, which will be our main future direction.
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[39] L. Zappella, X. Lladó, E. Provenzi, and J. Salvi, “Enhanced local subspace
affinity for feature-based motion segmentation,” Pattern Recognition, vol. 44,
no. 2, pp. 454–470, 2011.

[40] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated cartog-
raphy,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[41] K. Kanatani and Y. Sugaya, “Multi-state optimization for multi-body motion
segmentation,” in Australia-Japan Advanced Workshop on Computer Vision,
2003.

[42] T. Zhang, A. Szlam, and G. Lerman, “Median k-flats for hybrid linear
modeling with many outliers,” in Workshop on Subspace Methods, 2009.

[43] T.-J. Chin, H. Wang, and D. Suter, “The ordered residual kernel for robust
motion subspace clustering,” in NIPS, 2009, pp. 333–341.

[44] S. Mittal, S. Anand, and P. Meer, “Generalized projection based M-estimator:
Theory and applications,” IEEE TPAMI, 2012.

[45] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation in the presence
of outlying, incomplete, or corrupted trajectories,” IEEE TPAMI, vol. 32,
no. 10, pp. 1832–1845, 2010.

[46] N. Lazic, I. E. Givoni, B. J. Frey, and P. Aarabi, “Floss: Facility location
for subspace segmentation,” in ICCV, 2009, pp. 825–832.

[47] N. Lazic, B. J. Frey, and P. Aarabi, “Solving the uncapacitated facility
location problem using message passing algorithms,” in AISTATS, 2010,
pp. 429–436.

[48] C. M. Lee and L. Cheong, “Minimal basis facility location for subspace
segmentation,” in IEEE International Conference on Computer Vision, ICCV
2013, Sydney, Australia, December 1-8, 2013, 2013, pp. 1585–1592.

[49] M. Balinski, “Integer programming: Methods, uses, computation,” Manage-
ment Science, vol. 12, no. 3, pp. 253–313, 1965.

[50] M. A. Efroymson and T. L. Ray, “A branch-bound algorithm for plant
location,” Operations Research, vol. 14, no. 3, pp. 361–368, 1966.

[51] A. Klose, “A branch and bound algorithm for an uncapacitated facility
location problem with a side constraint,” International Transactions in
Operational Research, vol. 5, no. 2, pp. 155 – 168, 1998.

[52] K. Holmberg, M. Rnnqvist, and D. Yuan, “An exact algorithm for the
capacitated facility location problems with single sourcing,” European
Journal of Operational Research, vol. 113, no. 3, pp. 544 – 559, 1999.

[53] A. Schrijver, Theory of linear and integer programming. Wiley, 1998.
[54] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”

Operations Research, vol. 14, no. 4, pp. 699–719, 1966.
[55] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,

2nd ed. Cambridge University Press, 2004.

[56] M. Marques and J. Costeira, “Estimating 3d shape from degenerate se-
quences with missing data,” CVIU, vol. 113, no. 2, pp. 261–272, 2009.

[57] A. D. Bue, J. M. F. Xavier, L. de Agapito, and M. Paladini, “Bilinear
modeling via augmented lagrange multipliers (BALM),” IEEE TPAMI,
vol. 34, no. 8, pp. 1496–1508, 2012.

[58] A. Shashua, “On photometric issues in 3D visual recognition from a single
2D image,” IJCV, vol. 21, no. 1-2, pp. 99–122, 1997.

[59] N. Komodakis and G. Tziritas, “Approximate labeling via graph cuts based
on linear programming,” IEEE TPAMI, vol. 29, no. 8, pp. 1436–1453, 2007.

[60] C. Rother, V. Kolmogorov, V. S. Lempitsky, and M. Szummer, “Optimizing
binary MRFs via extended roof duality,” in CVPR, 2007.

[61] A. P. Eriksson, C. Olsson, and F. Kahl, “Normalized cuts revisited: A
reformulation for segmentation with linear grouping constraints,” in ICCV,
2007, pp. 1–8.

[62] MOSEK ApS, “Mosek modeling manual,” 2013. [Online]. Available:
http://www.mosek.com

[63] H. Kuhn, “The Hungarian method for the assignment problem,” Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[64] K. Kanatani, “Geometric information criterion for model selection,” IJCV,
vol. 26, no. 3, pp. 171–189, 1998.

[65] K. Kanatani, “Estimating the number independent motions for multibody
segmentation,” in Proc. ACCV, 2002.

[66] H. Wang and D. Suter, “Mdpe: A very robust estimator for model fitting
and range image segmentation,” IJCV, vol. 59, no. 2, pp. 139–166, 2004.

[67] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory,
and applications,” IEEE TPAMI, 2013.

[68] G. Liu and S. Yan, “Latent low-rank representation for subspace segmenta-
tion and feature extraction,” in ICCV, 2011, pp. 1615–1622.

[69] A. Aldroubi and A. Sekmen, “Nearness to local subspace algorithm for
subspace and motion segmentation,” IEEE Signal Processing Letters, vol. 19,
no. 10, pp. 704–707, 2012.

[70] A. Goh and R. Vidal, “Segmenting motions of different types by unsuper-
vised manifold clustering,” in CVPR, 2007.

[71] E. Elhamifar and R. Vidal, “Sparse manifold clustering and embedding,” in
NIPS, 2011, pp. 55–63.

[72] H. Hu, Q. Gu, L. Deng, and J. Zhou, “Multiframe motion segmentation via
penalized map estimation and linear programming,” in BMVC, 2009.

[73] T.-J. Chin, D. Suter, and H. Wang, “Multi-structure model selection via
kernel optimisation,” in CVPR, 2010, pp. 3586–3593.

Han Hu received the B.S. degree and ph.D. from De-
partment of Automation, Tsinghua University, Bei-
jing, China, in 2008 and 2014, respectively. From
2014, he has been a researcher in Institute of Deep
Learning, Baidu Research, Beijing, China. Currently,
his main interests are two-fold: high-level recognition
using various low-level visual cues, and learning
methods for low-level vision tasks.

Jianjiang Feng (M’10) is an associate professor in
the Department of Automation at Tsinghua Universi-
ty, Beijing. He received the B.S. and Ph.D. degrees
from the School of Telecommunication Engineering,
Beijing University of Posts and Telecommunications,
China, in 2000 and 2007, respectively. From 2008
to 2009, he was a Post Doctoral researcher in the
Pattern Recognition & Image Processing laboratory
at Michigan State University. His research interests
include fingerprint recognition, palmprint recogni-
tion, and structural matching.

Jie Zhou (M’01-SM’04) received B.S. degree and
M.S. degree both from Department of Mathematics,
Nankai University, Tianjin, China, in 1990 and 1992,
respectively. He received Ph.D. degree from Institute
of Pattern Recognition and Artificial Intelligence,
Huazhong University of Science and Technology
(HUST), Wuhan, China, in 1995. From then to 1997,
he served as a postdoctoral fellow in Department
of Automation, Tsinghua University, Beijing, China.
From 2003, he has been a full professor in De-
partment of Automation, Tsinghua University. His

research area includes computer vision, pattern recognition and image
processing. Dr. Zhou is a senior member of IEEE and a recipient of the
National Outstanding Youth Foundation of China.


