Self-Supervised Learning in Computer Vision: Past, Present, Trends

Han Hu (胡瀚) Visual Computing Group Microsoft Research Asia (MSRA)

October 10th, 2021 @ VALSE

Yann LeCun's Cake Analogy

- "Pure" Reinforcement Learning (cherry)
- ➤ The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
- ► The machine predicts a category or a few numbers for each input
- ► Predicting human-supplied data
- ► 10→10,000 bits per sample
- ► Self-Supervised Learning (cake génoise)
 - The machine predicts any part of its input for any observed part.
 - ► Predicts future frames in videos
 - ► Millions of bits per sample

Why Self-Supervised Learning?

Baby learns to see the world largely by observation

Photos courtesy of Emmanuel Dupoux

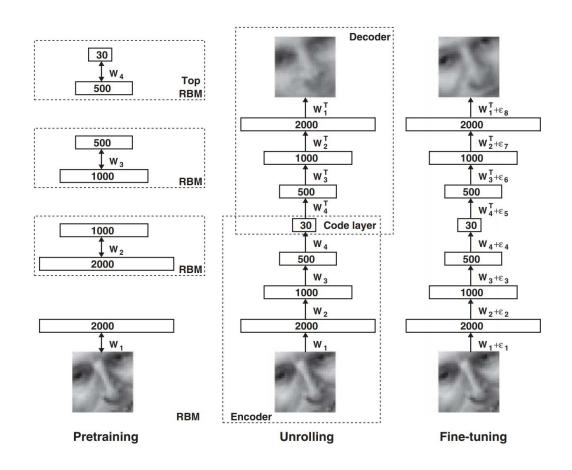
Credit by Yann LeCun

SSL Opened Deep Learning

Science, 2006

Reducing the Dimensionality of Data with Neural Networks

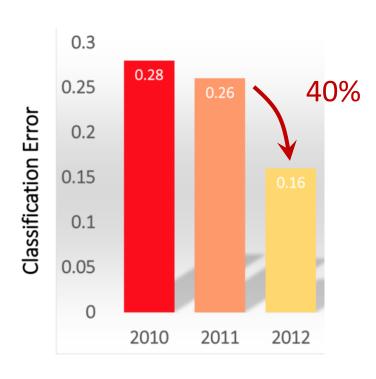
G. E. Hinton* and R. R. Salakhutdinov



Burst of Deep Learning in Computer Vision

Supervised learning using AlexNet (NeurIPS'2012)

ImageNet Challenge



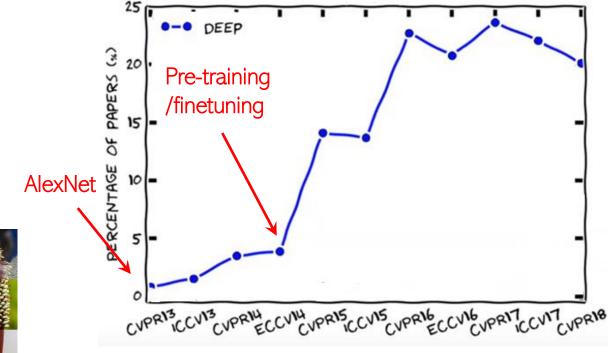
Supervised Pre-training + Fine-tuning

Pretraining on ImageNet Classification

Object Detection

Semantic Segmentation

Fine-grained Classification



Renaissance of Self-Supervised Learning

Self-Supervised Pretraining + Finetuning

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco

2019.11

MoCo

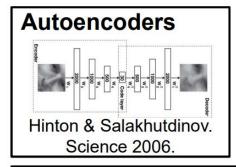
FAIR

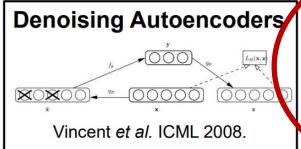
 For the first time, unsupervised pretraining outperform supervised pretraining on 7 down-stream tasks

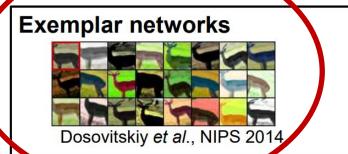
Renaissance of Self-Supervised Learning

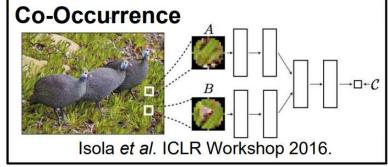
- Similar way as that of human baby learning
- Can utilize unlimited data ????

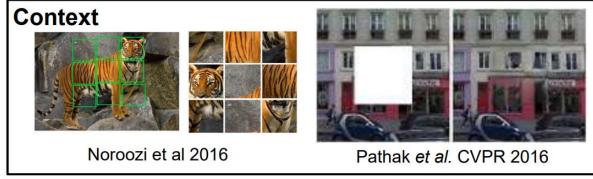
Credit mostly by Andrew Zisserman

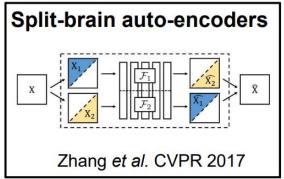












How Did We Get Here?

2014.6

Exemplar

Dosovitskiy et al, NIPS'2014

2018.5

Memory bank

Wu et al. CVPR'2018

Image #1

Image #2

Pre-text task: Image discrimination

2018.12

Deep metric transfer

MSRA

2019.11

MoCo

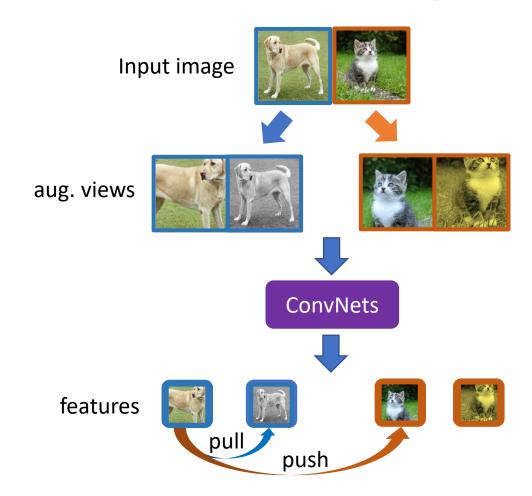
FAIR

 For the first time, unsupervised pretraining outperform supervised pretraining on 7 down-stream tasks

Contrastive Learning for Instance Discrimination

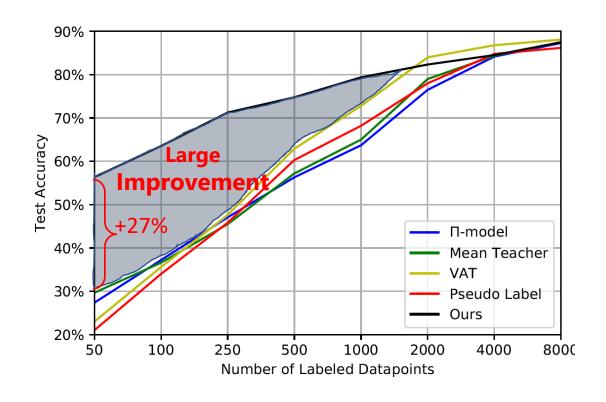
contrastive learning

Pre-text task: Image discrimination



Self-supervised pre-training for semi-supervised learning (2018)

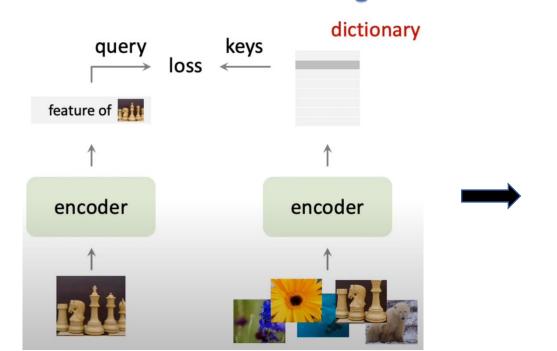
- Demonstrating value of selfsupervised pre-training on concrete problems
- Liu et al. Deep Metric Transfer for Label Propagation with Limited Annotated Data, Tech report 2018

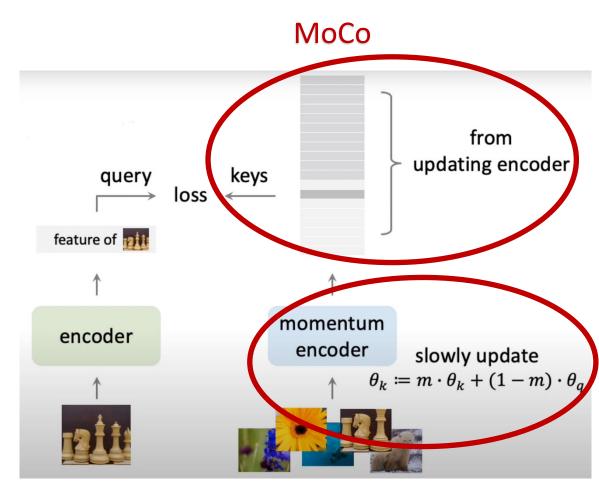


MoCo (CVPR'2020)

- Large dictionary
- Consistent dictionary by momentum encoder

contrastive learning



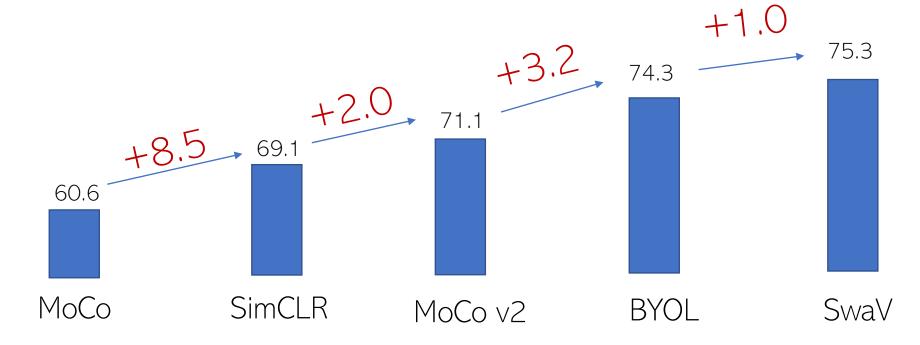


Renaissance of SSL

2019.11-2020.10

Main Theme

• Improving ImageNet-1K linear evaluation (top-1 acc)



Totally absolute 14.7% improvements in 6 months!

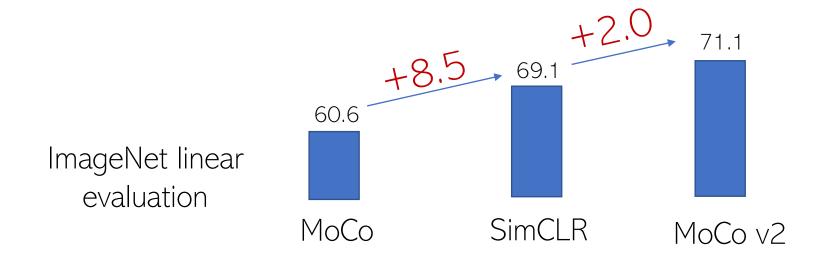
Representative Works

- SimCLR (ICML'2020)
- SimCLR v2 (NeurIPS'2020)
- BYOL (NeurIPS'2020)
- SwaV (NeurIPS'2020)
- PIC (NeurIPS'2020)

•

SimCLR (ICML'2020)

- Simpler: no momentum, no memory (dictionary)
- Sufficient distance between pretext tasks and downstream tasks
 - a linear projection layer -> a MLP layer
- Self-supervised learning benefit significantly from longer training



More Insights in SimCLR

- Self-supervised learning benefit more from larger models
- Self-supervised learning benefit significantly for semi-supervised learning

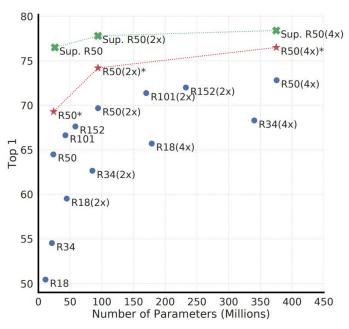


Figure 7. Linear evaluation of models with varied depth and width. Models in blue dots are ours trained for 100 epochs, models in red stars are ours trained for 1000 epochs, and models in green crosses are supervised ResNets trained for 90 epochs⁷ (He et al., 2016).

Architecture	1%		
ResNet-50	48.4	80.4	•
el-propagation:			
ResNet-50	51.6	82.4	1 27
ResNet-50	47.0	83.4	+27
ResNet-50	-	88.5	
ResNet-50	-	89.1	
ResNet-50 (4 \times)	-	91.2	
ation learning only:			•
ResNet-50	39.2	77.4	
RevNet-50 $(4\times)$	55.2	78.8	
ResNet-50	57.2	83.8	
ResNet-161(*)	77.9	91.2	
ResNet-50	75.5	87.8	
ResNet-50 $(2\times)$	83.0	91.2	
ResNet-50 $(4\times)$	85.8	92.6	
	ResNet-50 Pel-propagation: ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 (4×) Pation learning only: ResNet-50	Architecture 1% To ResNet-50 48.4 el-propagation: ResNet-50 51.6 ResNet-50 47.0 ResNet-50 - ResNet-50 (4×) - ation learning only: ResNet-50 (4×) 55.2 ResNet-50 (4×) 55.2 ResNet-50 (4×) 77.9 ResNet-50 (2×) 83.0	Top 5 ResNet-50 48.4 80.4 Pel-propagation: ResNet-50 51.6 82.4 ResNet-50 - 88.5 ResNet-50 - 89.1 ResNet-50 (4×) - 91.2 Pation learning only: ResNet-50 39.2 77.4 RevNet-50 (4×) 55.2 78.8 ResNet-50 57.2 83.8 ResNet-161(*) 77.9 91.2 ResNet-50 75.5 87.8 ResNet-50 83.0 91.2

Table 7. ImageNet accuracy of models trained with few labels.

SimCLR v2 (NeurlPS'2020)

"Big Self-Supervised Models are Strong Semi-Supervised Learners"

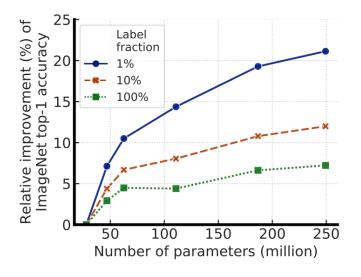
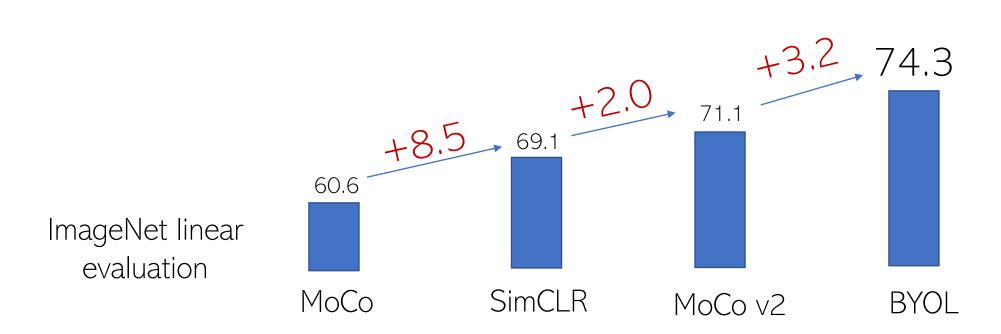


Figure 1: Bigger models yield larger gains when fine-tuning with fewer labeled examples.

Similar as that of GPT-3 in NLP!

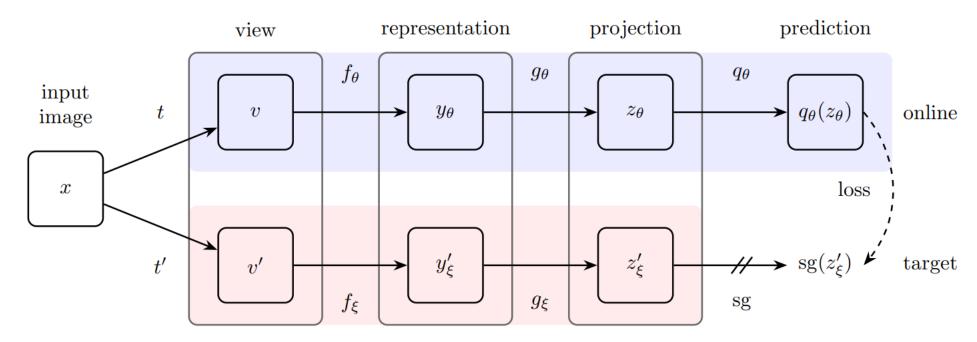
BYOL (NeurlPS'2020)

Bootstrap Your Own Latent



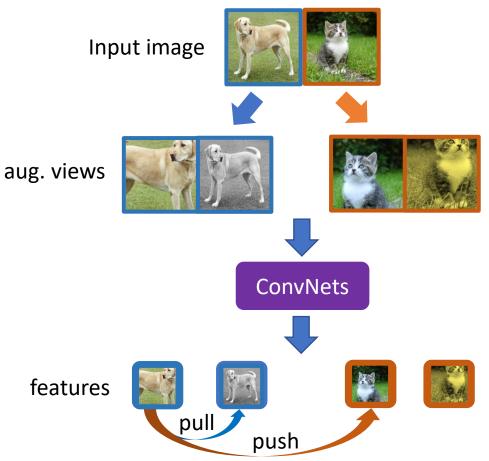
A Finding by BYOL

- MoCo: we need larger dictionary size (more negative pairs)
- BYOL: we do not need negative pairs anymore
 - an asymmetric design

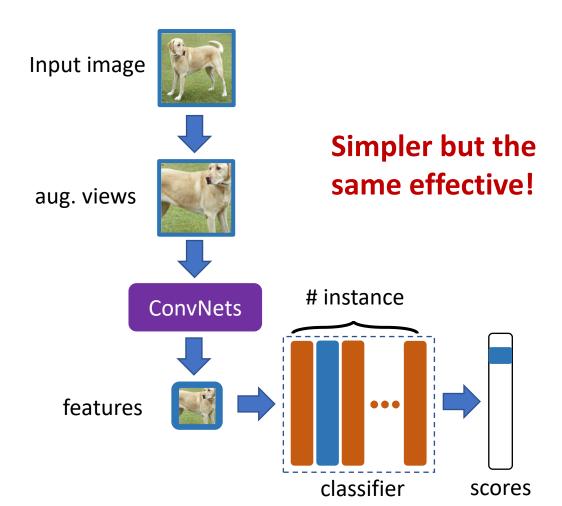


PIC: a Single-Branch Method (NeurlPS'2020)

two-branch methods (almost all previous methods)



one-branch method (PIC)



The Past Year's Trends

2020.11-present

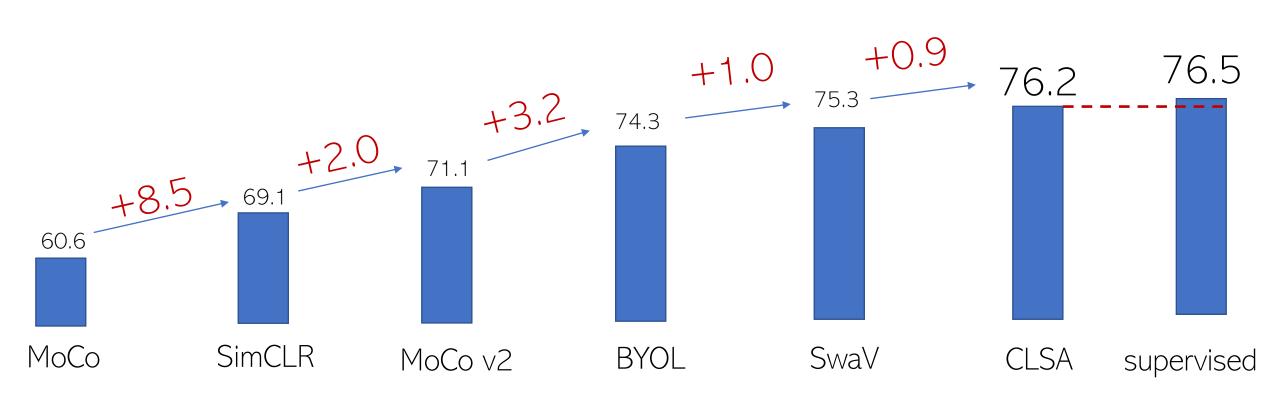
Three Main Trends during the Last Year

- More study on why BYOL does not collapse
 - BYOL (Arxiv v3), SimSiam (CVPR'2021), NonContrastiveSSL (ICML'2021)
- Pre-training good features for down-stream tasks
 - Pixel-level pre-training
 - PixPro, DenseCL (CVPR'2021)
 - Object-level pre-training
 - SoCo (NeurlPS'2021)
 - Other than contrastive learning
 - BEiT (Tech Report 2021)

Three Main Trends during the Last Year

- More study on BYOL why it does not collapse
 - BYOL (Arxiv v3), SimSiam (CVPR'2021)
- Pre-training good features for down-stream tasks
 - Pixel-level pre-training
 - PixPro, DenseCL (CVPR'2021)
 - Object-level pre-training
 - SoCo (NeurlPS'2021)
 - Other than contrastive learning
 - BEiT (Tech Report)

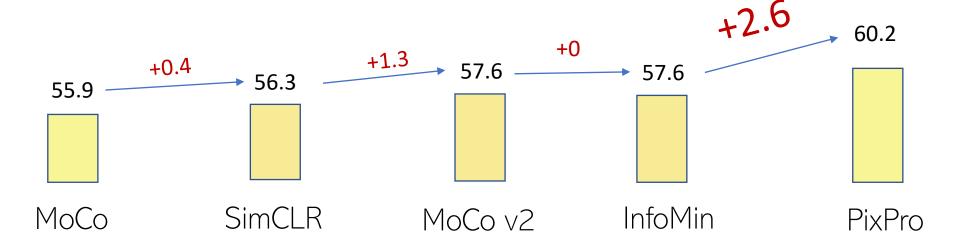
Improvements on ImageNet-1K linear evaluation



Totally 15.6% absolute improvements in 1 year!

Improvements on Pascal VOC object detection

PixPro (CVPR'2021)



Totally 1.7% absolute improvements in 1 year!

Zhenda Xie et al. *Propagate yourself: exploring pixel-level consistency for unsupervised visual representation learning.* CVPR'2021

PixPro Results

- VOC detection (+2.6 mAP)
- COCO FPN detection (+0.8 mAP) COCO C4 (+1.0 mAP)
- Cityscape segmentation (+1.0 mloU)

Method	#. Epoch	Pascal	Pascal VOC (R50-C4)		COCO (R50-FPN)			COCO (R50-C4)			Cityscapes (R50)	
Method	#. Epocii	AP	AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}	mIoU	
scratch	-	33.8	60.2	33.1	32.8	51.0	35.3	26.4	44.0	27.8	65.3	
supervised	100	53.5	81.3	58.8	39.7	59.5	43.3	38.2	58.2	41.2	74.6	
MoCo [18]	200	55.9	81.5	62.6	39.4	59.1	43.0	38.5	58.3	41.6	75.3	
SimCLR [8]	1000	56.3	81.9	62.5	39.8	59.5	43.6	38.4	58.3	41.6	75.8	
MoCo v2 [9]	800	57.6	82.7	64.4	40.4	60.1	44.3	39.5	59.0	42.6	76.2	
InfoMin [30]	200	57.6	82.7	64.6	40.6	60.6	44.6	39.0	58.5	42.0	75.6	
InfoMin [30]	800	57.5	82.5	64.0	40.4	60.4	44.3	38.8	58.2	41.7	75.6	
PixPro (ours)	100	58.8	83.0	66.5	41.3	61.3	45.4	39.6	59.2	42.8	76.8	
PixPro (ours)	400	60.2	83.8	67.7	41.4	61.6	45.4	40.5	59.8	44.0	77.2	

+2.6 mAP

+0.8 mAP

+1.0 mAP

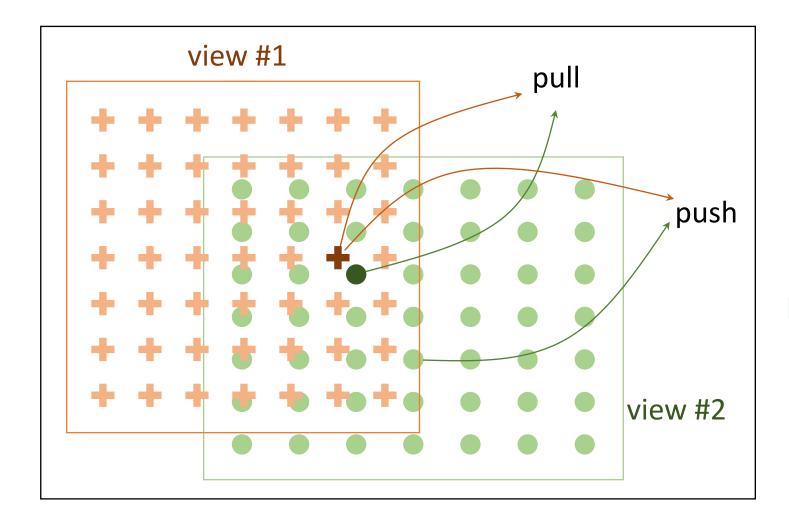
+1.0 mloU

From Instance-Level to Pixel-Level Learning

Previous pre-text tasks: instance discrimination

pixel-level pretext task

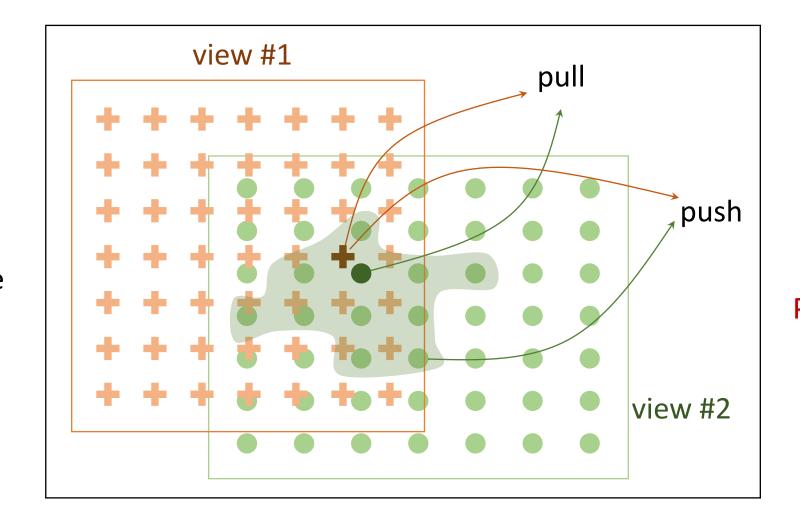
Pixel-Level Contrastive Learning



pixel discrimination

an image

Pixel-to-Propagation Consistency



an image

Pixel-to-propagation consistency

Pixel-to-Propagation Consistency

- Pixel contrast: spatial sensitivity
- Propagation: spatial smoothness

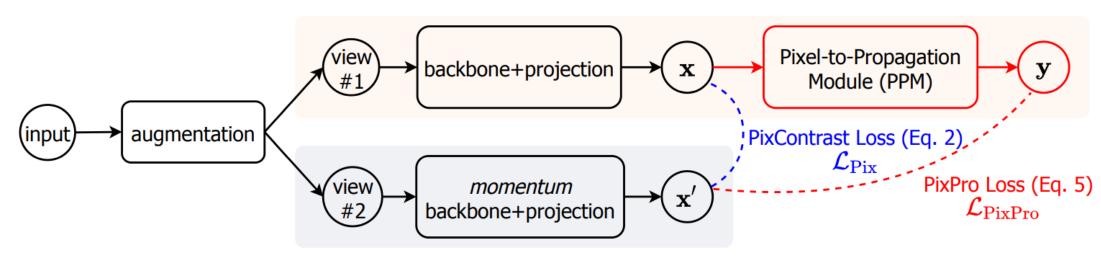
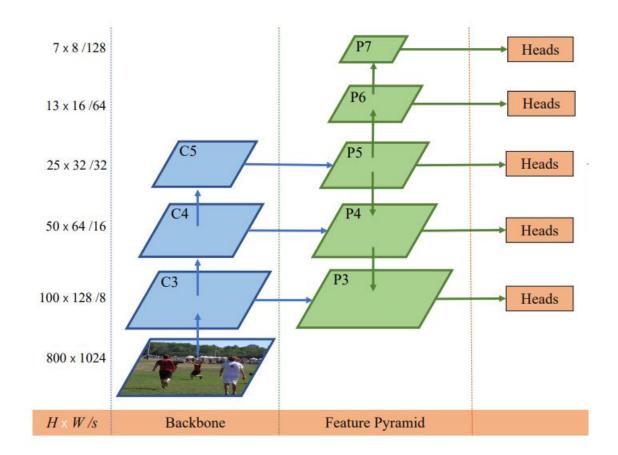


Figure 2. Architecture of the *PixContrast* and *PixPro* methods.

Aligning Pre-Training to Downstream Networks

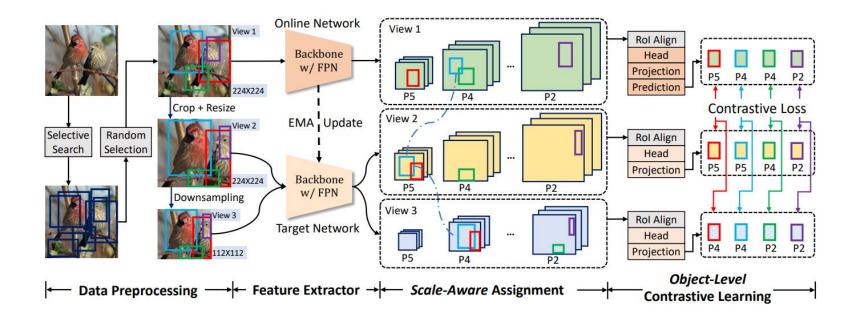
• Using the same architecture as in downstream tasks



An architecture in FCOS detector

Object-Level Pre-Training

- Aligning pretraining for object detection
 - SoCo (NeurlPS'2021)



Fangyun Wei et al. Aligning Pretraining for Detection via Object-Level Contrastive Learning. NeurlPS 2021

Object-Level Pre-Training (SoCo)

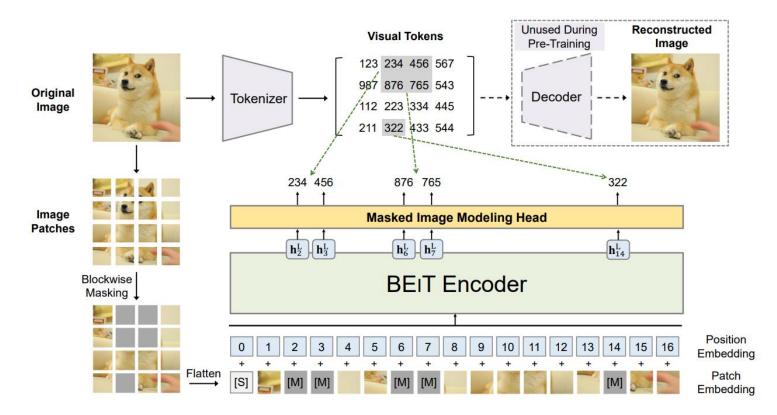
Results

Table 1: Comparison with state-of-the-art methods on **COCO** by using Mask R-CNN with **R50-FPN**.

Methods	Epoch	AP ^{bb}	AP ₅₀	1× Se AP ₇₅	chedule AP ^{mk}	AP ₅₀ ^{mk}	AP ₇₅ ^{mk}	AP ^{bb}	AP ₅₀	2× Se AP ₇₅	chedule AP ^{mk}	AP ₅₀ ^{mk}	AP ₇₅ ^{mk}
Scratch	-	31.0	49.5	33.2	28.5	46.8	30.4	38.4	57.5	42.0	34.7	54.8	37.2
Supervised	90	38.9	59.6	42.7	35.4	56.5	38.1	41.3	61.3	45.0	37.3	58.3	40.3
MoCo [4]	200	38.5	58.9	42.0	35.1	55.9	37.7	40.8	61.6	44.7	36.9	58.4	39.7
MoCo v2 [5]	200	40.4	60.2	44.2	36.4	57.2	38.9	41.7	61.6	45.6	37.6	58.7	40.5
InfoMin [6]	200	40.6	60.6	44.6	36.7	57.7	39.4	42.5	62.7	46.8	38.4	59.7	41.4
BYOL [3]	300	40.4	61.6	44.1	37.2	58.8	39.8	42.3	62.6	46.2	38.3	59.6	41.1
SwAV [7]	400	-	-	-	-	-	-	42.3	62.8	46.3	38.2	60.0	41.0
ReSim-FPN T [41]	200	39.8	60.2	43.5	36.0	57.1	38.6	41.4	61.9	45.4	37.5	59.1	40.3
PixPro [10]	400	41.4	61.6	45.4	-	-	-	-	-	-	-	-	-
InsLoc [12]	400	42.0	62.3	45.8	37.6	59.0	40.5	43.3	63.6	47.3	38.8	60.9	41.7
DenseCL [11]	200	40.3	59.9	44.3	36.4	57.0	39.2	41.2	61.9	45.1	37.3	58.9	40.1
$DetCon_S$ [13]	1000	41.8	_	_	37.4	_	_	42.9	_	_	38.1	-	-
$DetCon_B$ [13]	1000	42.7	-	-	38.2	-	-	43.4	-	-	38.7	-	-
SoCo	100	42.3	62.5	46.5	37.6	59.1	40.5	43.2	63.3	47.3	38.8	60.6	41.9
SoCo	400	43.0	63.3	47.1	38.2	60.2	41.0	44.0	64.0	48.4	39.0	61.3	41.7
SoCo*	400	43.2	63.5	47.4	38.4	60.2	41.4	44.3	64.6	48.9	39.6	61.8	42.5

BEIT: BERT Pretraining for Image Transformers

- Linear probe or pretraining / finetuning on ImageNet-1K?
- Contrastive learning or mask language (vision) modeling?



Three Main Trends during the Last Year

- More study on BYOL why it does not collapse
 - BYOL (Arxiv v3), SimSiam (CVPR'2021)
- Pre-training good features for down-stream tasks
 - Pixel-level pre-training
 - PixPro, DenseCL (CVPR'2021)
 - Object-level pre-training
 - SoCo (NeurlPS'2021)
 - Other than contrastive learning
 - BEiT (Tech Report)
- Self-supervised learning on Transformers
 - MoCo v3 (ICCV'2021), DINO (ICCV'2021)
 - SSL-Swin/MoBY/EsViT (tech report)

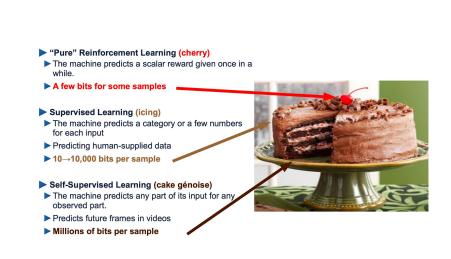
microsoft / Swin-Transformer Public This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows". SSL on Transformers? @ arxiv.org/abs/2103.14030 4600 stars MIT License COCO object detection ADE20K semantic segmentation CNN Transformer CNN Transformer backbones backbones backbones backbones 55 70 Swin-L (UperNet, ImageNet-22k pretrai CSP-p6 + Mish (multi-scale) 50 AC-FPN Cascade R-CNN (X-152-32×8d-FPN-IN5k, multi scale, only CEI HRNetV2 + OCR + RMI (PaddleClas_pretrained) D-RFCN + SNIP (DPN-98 with flip, multi-scale) CFNet (ResNet-101) Mask R-CNN (ResNeXt=1.0.1 FPN) PSPNet (ResNet-152)DSSPN (ResNet-101) Faster R-CNN (box refinement, context, multi-scale testing) RefineNet (ResNet-152) SSD512 2017 2018 2020 2019 2021 2016 2017 2018 2019 2021 Other models Models with highest mIoU

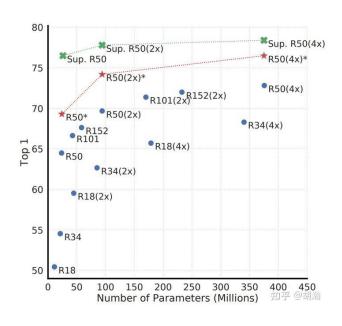
Evolving of state-of-the-art approaches for years

Other models Models with highest box AP

Self-Supervised Learning + Transformer

- "Golden combination"
 - SSL can better leverage the model capacity





Transformers have significantly stronger modeling power than CNN

MoCo v3 (ICCV'2021)

- Transformer is difficult to be tamed for SSL
 - Fixed patch projection

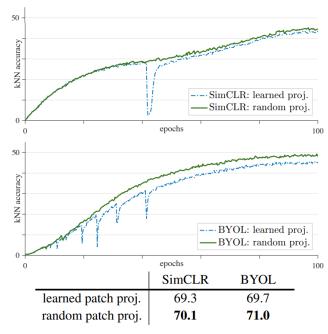


Figure 6. Random vs. learned patch projection (ViT-B/16, 100-epoch ImageNet, AdamW, batch 4096). Top: SimCLR: lr=2e-4, wd=0.1. Bottom: BYOL: lr=1e-4, wd=0.03.

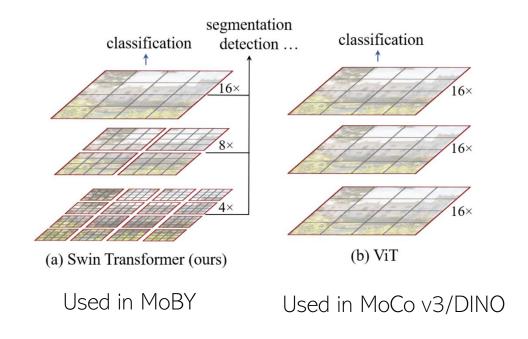
DINO (ICCV'2021)

• Implicitly learns segmentation

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

SSL-Swin (MoBY)

• Provide baselines to evaluate transferring performance on down-stream tasks



• No better than supervised approaches

Method	Model	Schd.	box AP		
	1110401		mAPbbox	AP ₅₀ bbox	AP ₇₅ bbox
Swin-T	Sup.	1x	43.7	66.6	47.7
	MoBY	1x	43.6	66.2	47.7
(mask R-CNN)	Sup.	3x	46.0	68.1	50.3
	MoBY	3x	46.0	67.8	50.6
Swin-T	Sup.	1x	48.1	67.1	52.2
(Cascade	MoBY	1x	48.1	67.1	52.1
mask R-CNN)	Sup.	3x	50.4	69.2	54.7
	MoBY	3x	50.2	68.8	54.7

COCO object detection

Method	Model	Schd.	mIoU
Swin-T	Sup.	160K	44.51
	MoBY	160K	44.06
(UPerNet)	Sup.†	160K	45.81
	MoBY†	160K	45.58

ADE20K semantic segmentation

SSL-Swin (MoBY)

Higher accuracy than DINO/MoCo v3, with much fewer additional tricks

Method	Arch.	Epochs	Params (M)	FLOPs (G)	img/s	Top-1 acc (%	(ó)
Sup.	DeiT-S	300	22	4.6	940.4	79.8	
Sup.	Swin-T	300	29	4.5	755.2	81.3	
MoCo v3	DeiT-S	300	22	4.6	940.4	72.5	
DINO	DeiT-S	300	22	4.6	940.4	72.5	-0.3 mAP vs. MoCo v3/DINO
DINO [†]	DeiT-S	300	22	4.6	940.4	75.9	——————————————————————————————————————
MoBY	DeiT-S	300	22	4.6	940.4	72.8	
MoBY	Swin-T	100	29	4.5	755.2	70.9	-2.2 mAP vs. DeiT
MoBY	Swin-T	300	29	4.5	755.2	75.0	

Table 1: Comparison of different SSL methods and different Transformer architectures in training.

What's Next?

Open Crucial Questions

Can SSL benefit from almost unlimited data?

- What is the relationship with multi-modality learning?
 - E.g., CLIP and DALL-E

Take-Home Message

- Enjoy the "cake"
- Two trends:
 - Aligning pre-training to downstream tasks
 - SSL + (Swin) Transformers
- Open critical questions
 - Can SSL benefit from almost unlimited data?
 - What is the relationship with multi-modality learning?

- ► "Pure" Reinforcement Learning (cherry)
- ► The machine predicts a scalar reward given once in a while.
- A few bits for some samples
- ► Supervised Learning (icing)
- The machine predicts a category or a few numbers for each input
- ▶ Predicting human-supplied data
- ► 10→10,000 bits per sample
- ► Self-Supervised Learning (cake génoise)
- ► The machine predicts any part of its input for any observed part.
- ▶ Predicts future frames in videos
- ► Millions of bits per sample

Reference

- [1] Yann LeCun. Self-Supervised Learning. AAAI 2020 Turing Talk https://drive.google.com/file/d/1r-mDL4IX_hzZLDBKp8_e8VZqD7fOzBkF/view?usp=sharing
- [2] G. Hinton, R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science 2006
- [3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. CVPR, 2020
- [3] Andrew Zisserman. Self-Supervised Learning. 2018 https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
- [4] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative unsupervised feature learning with convolutional neural networks. NeurIPS, 2014
- [5] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. CVPR, 2018
- [6] Bin Liu, Zhirong Wu, Han Hu and Stephen Lin. Deep Metric Transfer for Label Propagation with Limited Annotated Data. CVPRW, 2019
- [7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for Contrastive Learning of Visual Representations. ICML, 2020
- [8] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big Self-Supervised Models are Strong Semi-Supervised Learners. NeurIPS, 2020
- [9] Jean-Bastien Grill, et al. Bootstrap your own latent: A new approach to self-supervised Learning. NeurIPS, 2020
- [10] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurIPS, 2020

- [11] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang, and Han Hu. Parametric Instance Classification for Unsupervised Visual Feature Learning. NeurIPS, 2020
- [12] Xinlei Chen, Kaiming He. Exploring Simple Siamese Representation Learning. CVPR, 2021.
- [13] Yuandong Tian, Xinlei Chen, Surya Ganguli. Understanding self-supervised Learning Dynamics without Contrastive Pairs. ICML, 2021
- [14] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, Han Hu. Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning. CVPR, 2021
- [14] Xinlong Wang, et al. Dense Contrastive Learning for Self-Supervised Visual Pre-Training. CVPR, 2021
- [15] Fangyun Wei, Yue Gao, Zhirong Wu, Han Hu, Stephen Lin. Aligning Pretraining for Detection via Object-Level Contrastive Learning. NeurIPS 2021
- [16] Xinlei Chen, Saining Xie, Kaiming He. An Empirical Study of Training Self-Supervised Vision Transformers. Tech report https://arxiv.org/abs/2104.02057
- [17] Mathilde Caron et al. Emerging Properties in Self-Supervised Vision Transformers. Tech report https://arxiv.org/abs/2104.14294
- [18] Zhenda Xie, Yutong Lin, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao, Han Hu. Self-Supervised Learning with Swin Transformers. Tech report https://arxiv.org/abs/2105.04553
- [19] Hangbo Bao, Li Dong, Furu Wei. BEiT: BERT Pre-Training of Image Transformers. Tech report