Towards Universal Learning Machine: Self-Attention for Visual Modeling

Han Hu Visual Computing Group Microsoft Research Asia (MSRA)

https://ancientmooner.github.io/

Collaborators: Zheng Zhang, Yue Cao, Jiayuan Gu, Jiarui Xu, Jifeng Dai, Yichen Wei, Stephen Lin, Liwei Wang, Zhenda Xie, Fangyun Wei

Human Brain

• Human cortex can universally perceive different senses

figure credit to J. Sharma et al.

Intelligent Machines

• A universal learning pipeline

Intelligent Machines

• Particular basic model for different task/data

convolution

LSTM, GRU, convolution, self-attention, ...

graph networks

Universal Basic Models for Intelligent Machines?

Relation Networks: Towards Universal Basic Models

similar things: graph neural networks, self-attention, ...

(self)-attention

graph neural networks

left figure credit to P. Battaglia et al.

Relation Networks for Graph Data

T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR 2018

Relation Networks for NLP

Relation Networks for Visual Modeling

our study timeline

Object-Object Relation Modeling

Han Hu^{*}, Jiayuan Gu^{*}, Zheng Zhang^{*}, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

Object-Object Relation Modeling

It is much easier to detect the *glove* if we know there is a *baseball player*.

Han Hu^{*}, Jiayuan Gu^{*}, Zheng Zhang^{*}, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

Object Relation Module

The First Fully End-to-End Object Detector

back propagation steps

S. Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015

Results on COCO Object Detection

backbone	setting	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS	
faster RCNN	2fc+SoftNMS	32.2/32.7	52.9/53.6	34.2/34.7	58.3M	122.2B	
	2fc+RM+SoftNMS	34.7/35.2	55.3/ 56.2	37.2/37.8	64.3M	124.6B	+3.0 mAP
	2fc+RM+e2e	35.2/35.4	55.8 /56.1	38.2/38.5	64.6M	124.9B	
FPN	2fc+SoftNMS	36.8/37.2	57.8/58.2	40.7/41.4	56.4M	145.8B	
	2fc+RM+SoftNMS	38.1/38.3	59.5/59.9	41.8/42.3	62.4M	157.8B	+2.0 mAP
	2fc+RM+e2e	38.8/38.9	60.3/60.5	42.9/43.3	62.8M	158.2B	
DCN	2fc+SoftNMS	37.5/38.1	57.3/58.1	41.0/41.6	60.5M	125.0B	
	2fc+RM+SoftNMS	38.1/38.8	57.8/ 58.7	41.3/42.4	66.5M	127.4B	+1.0 mAP
	2fc+RM+e2e	38.5/39.0	57.8 /58.6	42.0/42.9	66.8M	127.7B	

*Faster R-CNN with ResNet-101 model are used (evaluation on *minival/test-dev* are reported)

• less than 10% computation overhead on all backbones

Object Pairs with High Relation Weights

instance recognition

0.140 570.155

reference object

duplicate removal

other objects contributing high weights

Class Co-Occurrence Information is Learnt

Class Co-occurrence Probability

Learnt Attentional Weights

Extension: Spatial-Temporal Object Relation

Jiarui Xu, Yue Cao, Zheng Zhang and Han Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. Tech Report 2018

Learnable Object-Pixel Relation (vs. RolAlign)

Image Feature to Region Feature

Geometric

Appearance

Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei and Jifeng Dai. *Learning Region Features for Object Detection*. ECCV 2018

Pixel-Pixel Relation Modeling

convolution

ConvNets

Question I: Can We Go Beyond *Convolution*?

convolution = template matching

Can we model the patterns by **one** channel?

template -> compose

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. Tech Report 2019

Related Works: Capsule Networks

• Not aligned well with modern learning infrastructure

Figure credit by Aurélien Géron

S. Sabour et al. Dynamic Routing Between Capsules. NIPS2017

Related Works: Non-Local Neural Networks

Complementary to ConvNets

X. Wang et al. Non-local Neural Networks. CVPR2018

Beyond Convolution: Local Relation Layer

= relation network + locality + geometric prior + scalar key/query

local relation

Local Relation Network (LR-Net)

stage	output	ResNet-50		LR-Net-50 (7×7, <i>m</i> =8)		
res1	112×112	7×7 conv, 64, strid	e 2	1×1, 64 7×7 LR, 64, stride 2		
	56×56	3×3 max pool, stride 2		3×3 max pool, stride 2		
res2		1×1, 64		1×1, 100		
		3×3 conv, 64	$\times 3$	7×7 LR, 100 ×3	3	
		1×1, 256		1×1, 256		
res3	28×28	1×1, 128]	[1×1, 200]		
		3×3 conv, 128	$\times 4$	$7 \times 7 \text{ LR}, 200 \times 4$	4	
		1×1, 512		1×1, 512		
res4	14×14	1×1,256]	[1×1, 400]		
		3×3 conv, 256	×6	$7 \times 7 LR, 400 \times 6$	6	
		1×1, 1024		1×1, 1024		
res5	7×7	1×1, 512]	[1×1, 800]		
		3×3 conv, 512	$\times 3$	7×7 LR, 800 ×3	3	
		1×1, 2048		1×1, 2048		
	1 \sc 1	global average pool		global average pool		
	1 × 1	1000-d fc, softma	Х	1000-d fc, softmax		
# params		25.5×10^{6}		23.3 ×10 ⁶		
FLOPs		4.3×10^9		4.3×10^9		

Totally convolution free!

Classification on ImageNet (26 Layers)

Robust to Adversarial Attacks

network		adversaria	regular train	
network	clean	targeted	untargeted	clean
ResNet-26	44.9	37.9	14.4	72.8
ResNet-50	52.0	43.0	22.5	76.3
LR-Net-26	52.1	44.2	26.8	75.7

Question II: Do Non-local Networks Work Well Due to Relation Learning?

attention maps for different query pixels

Yue Cao*, Jiarui Xu*, Stephen Lin, Fangyun Wei and Han Hu. GCNet: Non-local Networks meet SE-Net and Beyond. Tech Report 2019

Explicit Query-Independent Attention Map

Simplified Non-Local Blocks

The same accurate but significantly reducing computation!

Meet SE-Net (2017 ImageNet Champion)

Abstraction and New Instantiation

COCO Object Detection Results

• Baseline: Mask R-CNN + ResNet50 + FPN

method	AP (bbox)	AP (mask)	#param	FLOPs
baseline	37.2	33.8	44.4M	279.4G
NL-Net	38.0	34.7	46.5M	288.7G
SE-Net	38.2	34.7	46.9M	279.5G
GC-Net	39.4	35.7	46.9M	279.6G

Discussion: versus Deformable ConvNets

- Both can model content aware adaptiveness
- Verification vs. Regression
- Generality (arbitrary vs. grid)
- Partly complementary

relation networks

deformable conv

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu and Yichen Wei. Deformable Convolutional Networks. In ICCV 2017.
Xizhou Zhu, Han Hu, Stephen Lin and Jifeng Dai. Deformable ConvNets v2: More Deformable, Better Results. In CVPR 2019.
Ze Yang, Shaohui Liu, Han Hu, Liwei Wang and Stephen Lin. RepPoints: Point Set Representation for Object Detection. Tech Report.

Thanks!

object-pixel

pixel-pixel

Convolution

Variants

Relation

Networks

object-object

RolAlign

Relation

Networks

None

Relation **Networks**

Relation Network is All You Need for AI——SkyNet