Relation Networks for Visual Modeling

Han Hu
Visual Computing Group
Microsoft Research Asia (MSRA)

https://ancientmooner.github.io/

Human Brain

Human cortex can universally perceive different senses

figure credit to J. Sharma et al.

Intelligent Machines

• A universal learning pipeline

Intelligent Machines

• Particular basic model for different task/data

convolution

LSTM, GRU, convolution, self-attention, ...

graph networks

Universal Basic Models for Intelligent Machines?

Relation Networks: Towards Universal Basic Models

similar things: graph neural networks, self-attention, ...

graph neural networks

(self)-attention

left figure credit to P. Battaglia et al.

Relation Networks for Graph Data

T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR 2018

Relation Networks for NLP

Relation Networks for Visual Modeling

Object-Object Relation Modeling

Object-Object Relation Modeling

It is much easier to detect the *glove* if we know there is a *baseball player*.

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. Relation Networks for Object Detection. CVPR 2018

Object Relation Module

Plug-and-Play

✓ Parallel, learnable, no additional supervision, translational invariant, stackable

Key Feature

- ✓ **Relative Geometric** Term
- ✓ Multiple Relation Branches
- ✓ Shortcut

The First Fully End-to-End Object Detector

back propagation steps

S. Ren et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. NIPS 2015

Results on COCO Object Detection

backbone	setting	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS	
faster RCNN	2fc+SoftNMS	32.2/32.7	52.9/53.6	34.2/34.7	58.3M	122.2B	
	2fc+RM+SoftNMS	34.7/35.2	55.3/ 56.2	37.2/37.8	64.3M	124.6B	+3.0 mAP
	2fc+RM+e2e	35.2/35.4	55.8 /56.1	38.2/38.5	64.6M	124.9B	
FPN	2fc+SoftNMS	36.8/37.2	57.8/58.2	40.7/41.4	56.4M	145.8B	
	2fc+RM+SoftNMS	38.1/38.3	59.5/59.9	41.8/42.3	62.4M	157.8B	+2.0 mAP
	2fc+RM+e2e	38.8/38.9	60.3/60.5	42.9/43.3	62.8M	158.2B	
DCN	2fc+SoftNMS	37.5/38.1	57.3/58.1	41.0/41.6	60.5M	125.0B	
	2fc+RM+SoftNMS	38.1/38.8	57.8/ 58.7	41.3/42.4	66.5M	127.4B	+1.0 mAP
	2fc+RM+e2e	38.5/39.0	57.8 /58.6	42.0/42.9	66.8M	127.7B	

^{*}Faster R-CNN with ResNet-101 model are used (evaluation on *minival/test-dev* are reported)

• less than 10% computation overhead on all backbones

Object Pairs with High Relation Weights

instance recognition

duplicate removal

other objects contributing high weights

Class Co-Occurrence Information is Learnt

Class Co-occurrence Probability

Learnt Attentional Weights

r = 0.90

Extension: Spatial-Temporal Object Relation

Jiarui Xu, Yue Cao, Zheng Zhang and Han Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. Tech Report 2018

Learnable Object-Pixel Relation (vs. RolAlign)

Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei and Jifeng Dai. Learning Region Features for Object Detection. ECCV 2018

Pixel-Pixel Relation Modeling

convolution

ConvNets

Question I: Can We Go Beyond *Convolution*?

convolution = template matching

Can we model the patterns by **one** channel?

template -> compose

Related Works: Capsule Networks

Not aligned well with modern learning infrastructure

Figure credit by Aurélien Géron

S. Sabour et al. Dynamic Routing Between Capsules. NIPS2017

Related Works: Non-Local Neural Networks

Complementary to ConvNets

Beyond Convolution: Local Relation Layer

= relation network + locality + geometric prior + scalar key/query

Local Relation Network (LR-Net)

stage	output	ResNet-50	LR-Net-50 (7×7, m=8)			
res1	112×112	7×7 conv, 64, stride	1×1, 64 7×7 LR, 64, stride 2			
res2	56×56	3×3 max pool, stride	3×3 max pool, stride 2			
		$\begin{bmatrix} 1 \times 1, 64 \end{bmatrix}$		$\begin{bmatrix} 1 \times 1, 100 \end{bmatrix}$		
		3×3 conv, 64	$\times 3$	7×7 LR, 100	$\times 3$	
		1×1, 256		$1 \times 1,256$		
	28×28	[1×1, 128]		1×1, 200		
res3		3×3 conv, 128	$\times 4$	7×7 LR, 200	$\times 4$	
		$\begin{bmatrix} 1 \times 1,512 \end{bmatrix}$		$\begin{bmatrix} 1 \times 1,512 \end{bmatrix}$		
res4	14×14	[1×1, 256]		$1 \times 1,400$		
		3×3 conv, 256	$\times 6$	7×7 LR, 400	×6	
		$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$		$\begin{bmatrix} 1 \times 1, 1024 \end{bmatrix}$		
res5	7×7	$\begin{bmatrix} 1 \times 1,512 \end{bmatrix}$		1×1,800		
		3×3 conv, 512	$\times 3$	7×7 LR, 800	$\times 3$	
		$\begin{bmatrix} 1 \times 1, 2048 \end{bmatrix}$		$1 \times 1,2048$		
	1×1	global average pool 1000-d fc, softmax		global average pool		
	1 / 1			1000-d fc, softmax		
# params		25.5×10^6	23.3×10^6			
FLOPs		4.3 ×10 ⁹	4.3 ×10 ⁹			

Totally convolution free!

Classification on ImageNet (26 Layers)

Robust to Adversarial Attacks

network		adversaria	regular train	
network	clean	targeted	untargeted	clean
ResNet-26	44.9	37.9	14.4	72.8
ResNet-50	52.0	43.0	22.5	76.3
LR-Net-26	52.1	44.2	26.8	75.7

Question II: Do Non-local Networks Work Well Due to Relation Learning?

attention maps for different query pixels

Yue Cao*, Jiarui Xu*, Stephen Lin, Fangyun Wei and Han Hu. GCNet: Non-local Networks meet SE-Net and Beyond. Tech Report 2019

Explicit Query-Independent Attention Map

Simplified Non-Local Blocks

The same accurate but significantly reducing computation!

Meet SE-Net (2017 ImageNet Champion)

Abstraction and New Instantiation

COCO Object Detection Results

• Baseline: Mask R-CNN + ResNet50 + FPN

method	AP (bbox)	AP (mask)	#param	FLOPs
baseline	37.2	33.8	44.4M	279.4G
NL-Net	38.0	34.7	46.5M	288.7G
SE-Net	38.2	34.7	46.9M	279.5G
GC-Net	39.4	35.7	46.9M	279.6G

Discussion: versus Deformable ConvNets

- Both can model content aware adaptiveness
- Verification vs. Regression
- Generality (arbitrary vs. grid)
- Partly complementary

relation networks

deformable conv

- [1] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu and Yichen Wei. Deformable Convolutional Networks. In ICCV 2017.
- [2] Xizhou Zhu, Han Hu, Stephen Lin and Jifeng Dai. Deformable ConvNets v2: More Deformable, Better Results. In CVPR 2019.
- [3] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang and Stephen Lin. RepPoints: Point Set Representation for Object Detection. Tech Report.

Thanks!

pixel-pixel object-pixel object-object Convolution None RolAlign **Variants** Relation Relation Relation **Networks Networks Networks**

Relation Network is All You Need for AI——SkyNet