Recent Progress on Self-Supervised Visual Representation Learning

Han Hu (胡瀚) Visual Computing Group Microsoft Research Asia (MSRA) November 27th, 2020

A Story about Cake (in Yann LeCun's Turing Talk)

- **▶** "Pure" Reinforcement Learning (cherry)
 - ➤ The machine predicts a scalar reward given once in a while.
 - ► A few bits for some samples
- Supervised Learning (icing)
 - The machine predicts a category or a few numbers for each input
 - ► Predicting human-supplied data
 - ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
- ➤ The machine predicts any part of its input for any observed part.
- ► Predicts future frames in videos
- ► Millions of bits per sample

Why Self-Supervised Learning?

Baby learns how to world works largely by observation

Photos courtesy of Emmanuel Dupoux

Credit by Yann LeCun

A Story about ImageNet

AlexNet (NIPS'2012)

ImageNet Challenge

A Story about ImageNet

Supervised Pretraining + Finetuning (2014)

A kind of transfer learning paradigm

Pretraining on ImageNet Classification

Semantic Segmentation

Object Detection

Fine-grained Classification

Two Stories Meet Each Other

• Unsupervised Pretraining + Finetuning

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco

2019.11

MoCo

FAIR

• For the first time, unsupervised pretraining outperform supervised pretraining on 7 down-stream tasks

The Self-Supervised Learning Era!

- Can utilize unlimited data
- Similar way as that of human baby learning

How Did We Get Here?

Credit mostly by Andrew Zisserman

Caron et al, ECCV'2018

Gidaris et al, ICLR'2018
Image GPT

Chen et al, ICML'2020

Pathak et al. CVPR 2016

How Did We Get Here?

2014.6

Exemplar

Dosovitskiy et al, NIPS'2014

2018.5

Memory bank

Wu et al, CVPR'2018

Image #1

Image #2

Image #3

Pre-text task: Image discrimination

2018.12

Deep metric transfer

MSRA

2019.11

MoCo

FAIR

• For the first time, unsupervised pretraining outperform supervised pretraining on 7 down-stream tasks

Contrastive Learning for Instance Discrimination

contrastive learning

Pre-text task: Image discrimination

MoCo (CVPR'2020)

Credit by Kaiming He

- Large dictionary
- Consistent dictionary by momentum encoder

contrastive learning

Credit by Kaiming He

- Large dictionary
- Consistent dictionary by momentum encoder

contrastive learning

MoCo Results

 Outperforms supervised methods on 7 down-stream tasks for the first time

pre-train	AP_{50}	AP	AP ₇₅
random init.	60.2	33.8	33.1
super. IN-1M	81.3	53.5	58.8
MoCo IN-1M	81.5 (+0.2)	55.9 (+ 2.4)	62.6 (+3.8)
MoCo IG-1B	82.2 (+0.9)	57.2 (+ 3.7)	63.7 (+ 4.9)

(b) Faster R-CNN, R50-C4

Table 2. Object detection fine-tuned on PASCAL VOC

pre-train	APbb	AP_{50}^{bb}	$\mathrm{AP^{bb}_{75}}$	AP^{mk}	AP_{50}^{mk}	AP ₇₅ ^{mk}	
random init.	31.0	49.5	33.2	28.5	46.8	30.4	_
super. IN-1M	38.9	59.6	42.7	35.4	56.5	38.1	
MoCo IN-1M	38.5 (-0.4)	58.9 (-0.7)	42.0 (-0.7)	35.1 (-0.3)	55.9 (-0.6)	37.7 (-0.4)	_
MoCo IG-1B	38.9 (0.0)	59.4(-0.2)	42.3(-0.4)	35.4 (0.0)	56.5 (0.0)	37.9(-0.2)	

(a) Mask R-CNN, R50-FPN, 1× schedule

pre-train	APbb	$\mathrm{AP^{bb}_{50}}$	AP_{75}^{bb}	AP ^{mk}	AP_{50}^{mk}	AP ^{mk}
random init.	26.4	44.0	27.8	29.3	46.9	30.8
super. IN-1M	38.2	58.2	41.2	33.3	54.7	35.2
MoCo IN-1M	38.5 (+0.3)	58.3 (+0.1)	41.6 (+0.4)	33.6 (+0.3)	54.8 (+0.1)	35.6 (+0.4)
MoCo IG-1B	39.1 (+0.9)	58.7 (+0.5)	42.2 (+1.0)	34.1 (+0.8)	55.4 (+0.7)	36.4 (+1.2)

(c) Mask R-CNN, R50-C4, 1× schedule

Table 5. Object detection and instance segmentation fine-tuned on COCO

	coc	COCO keypoint detection							
pre-train	AP^{kp}	$\mathrm{AP}^{\mathrm{kp}}_{50}$	$\mathrm{AP}^{\mathrm{kp}}_{75}$						
random init.	65.9	86.5	71.7						
super. IN-1M	65.8	86.9	71.9						
MoCo IN-1M	66.8 (+1.0)	87.4 (+0.5)	72.5 (+0.6)						
MoCo IG-1B	66.9 (+1.1)	87.8 (+ 0.9)	73.0 (+1.1)						
	coco	dense pose estir							
pre-train	AP ^{dp}	$\mathrm{AP_{50}^{dp}}$	$\mathrm{AP}^{\mathrm{dp}}_{75}$						
random init.	39.4	78.5	35.1						
super. IN-1M	48.3	85.6	50.6						

	LVIS v0.5 instance segmentation							
pre-train	AP ^{mk}	$\mathrm{AP_{50}^{mk}}$	$\mathrm{AP^{mk}_{75}}$					
random init.	22.5	34.8	23.8					
super. IN-1M [†]	24.4	37.8	25.8					
MoCo IN-1M	24.1 (-0.3)	37.4 (-0.4)	25.5 (-0.3)					
MoCo IG-1B	24.9 (+ 0.5)	38.2 (+0.4)	26.4 (+0.6)					

86.8 (+1.2)

87.0 (+1.4)

53.9 (+3.3)

54.3 (+3.7)

50.1 (+1.8)

50.6 (+2.3)

MoCo IN-1M

MoCo IG-1B

	Cityscapes in		Semantic seg. (mIoU)			
pre-train	AP ^{mk}	$\mathrm{AP}^{\mathrm{mk}}_{50}$	Cityscapes	VOC		
random init.	25.4	51.1	65.3	39.5		
super. IN-1M	super. IN-1M 32.9		74.6	74.4		
MoCo IN-1M	32.3 (-0.6)	59.3 (-0.3)	75.3 (+ 0.7)	72.5 (-1.9)		
MoCo IG-1B	32.9 (0.0)	60.3 (+ 0.7)	75.5 (+ 0.9)	73.6 (-0.8)		

MoCo Results

• ImageNet-1K linear evaluation

After MoCo

- SimCLR (ICML'2020)
- NeurIPS'2020 papers
- After NeurIPS'2020

SimCLR (ICML'2020)

- Simpler: no momentum, no memory (dictionary)
- Sufficient distance between pretext tasks and downstream tasks
 - a linear projection layer -> a MLP layer
- Self-supervised learning benefit significantly from longer training
- Carefully tuning data augmentation methods

More Insights in SimCLR

- Self-supervised learning benefit more from larger models
- Self-supervised learning benefit significantly for semi-supervised learning

Figure 7. Linear evaluation of models with varied depth and width. Models in blue dots are ours trained for 100 epochs, models in red stars are ours trained for 1000 epochs, and models in green crosses are supervised ResNets trained for 90 epochs⁷ (He et al., 2016).

		Label fraction		
Method	Architecture	1%	10%	
		То	p 5	
Supervised baseline	ResNet-50	48.4	80.4	
Methods using other labe	l-propagation:			
Pseudo-label	ResNet-50	51.6	82.4	
VAT+Entropy Min.	ResNet-50	47.0	83.4	
UDA (w. RandAug)	ResNet-50	-	88.5	
FixMatch (w. RandAug)	ResNet-50	-	89.1	
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2	
Methods using representa	tion learning only:			
InstDisc	ResNet-50	39.2	77.4	
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8	
PIRL Screenshot(Alt + A)	ResNet-50	57.2	83.8	
CPC v2	ResNet-161(*)	77.9	91.2	
SimCLR (ours)	ResNet-50	75.5	87.8	
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2	
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6	

Similar as that of GPT-3 in NLP!

+27.1

Table 7. ImageNet accuracy of models trained with few labels.

SimCLR v2 (NeurlPS'2020)

"Big Self-Supervised Models are Strong Semi-Supervised Learners"

Figure 1: Bigger models yield larger gains when fine-tuning with fewer labeled examples.

Figure 2: Top-1 accuracy of previous state-of-the-art (SOTA) methods [1, 2] and our method (SimCLRv2) on ImageNet using only 1% or 10% of the labels. Dashed line denotes fully supervised ResNet-50 trained with 100% of labels. Full comparisons in Table 3.

"Unsupervised" Papers on NeurlPS'2020

- 130 papers by a keyword "unsupervised" (totally about 1,900)
- Representative works
 - BYOL (DeepMind)
 - SwaV (Facebook Al Research)
 - InfoMin (MIT, Google Research)
 - SimCLR v2 (Google Brain)
 - PIC (talk #4 by Zhenda Xie, MSRA)

BYOL

Bootstrap Your Own Latent

A Finding by BYOL

- MoCo: we need larger dictionary size (more negative pairs)
- BYOL: we do not need negative pairs anymore
 - an asymmetric design

SwaV

• Contrasting Cluster Assignments

SwaV

- Deep clustering (ECCV'2018) + contrastive learning
- Additional small patches in view generation

Contrastive instance learning

Swapping Assignments between Views (Ours)

Codes

Codes

Swapped

Prediction

InfoMin: What Makes for Good Views for Contrastive Learning?

- Empirical study on augmentation methods
- Extensive/good results on Pascal VOC and COCO detection
 - Previous methods mostly focus on improving ImageNet linear evaluation accuracy

pre-train	AP ₅₀	AP	AP_{75}	ImageNet Acc(%)
random init.*	60.2	33.8	33.1	-
supervised*	81.3	53.5	58.8	76.1
InstDis	80.9	55.2	61.2	59.5
PIRL	81.0	55.5	61.3	61.7
MoCo*	81.5	55.9	62.6	60.6
InfoMin Aug. (ours)	82.7	57.6	64.6	70.1

pre-train	AP^{bb}	$\mathrm{AP^{bb}_{50}}$	$\mathrm{AP^{bb}_{75}}$
random init*	26.4	44.0	27.8
supervised*	38.2	58.2	41.2
MoCo*	38.5(\(\psi\)0.3)	58.3(\(\psi\)0.1)	41.6(\(\cappa_0.4\))
InfoMin Aug.	39.0(\(\dagger)0.8)	58.5(\(\psi\)0.3)	$42.0(\uparrow 0.8)$

PIC: a Single-Branch Method (Talk #4)

two-branch methods (almost all previous methods)

one-branch method (PIC)

Representative Works after NeurlPS'2020

- Higher ImageNet-1 K linear evaluation accuracy
 - Contrastive learning with stronger augmentations (CLSA)
 - (ICLR'2021 submission) CLSA 76.2 vs supervised 76.5
- Better understanding
 - What makes instance discrimination good for transfer learning?
 - (ICLR'2021 submission) it is mainly the low-level features that effect!
- More study on BYOL why it does not collapse
 - BYOL (Arxiv v3)
 - Exploring Simple Siamese Representation Learning (tech report)
- Pixel-level pretext tasks
 - PixPro, for more spatially fine-grained representation learning

Motivation of PixPro

• Improvements on ImageNet-1K linear evaluation

Totally 15.6% absolute improvements in 1 year!

PixPro

- Improvements on Pascal VOC object detection (C4)
- Zhenda Xie et al. *Propagate yourself: exploring pixel-level consistency for unsupervised visual representation learning.* Tech Report 2020

Totally 1.1% absolute improvements in 1 year!

PixPro Results

- VOC detection (+2.6 mAP)
- COCO FPN detection (+0.8 mAP) COCO C4 (+1.0 mAP)
- Cityscape segmentation (+1.0 mloU)

Method	#. Epoch	Pasca	l VOC (R50-C4)	COC	O (R50-	FPN)	COC	CO (R50	-C4)	Cityscapes (R50)
Method	#. Epoch	AP	AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}	mAP	AP_{50}	AP_{75}	mIoU
scratch	-	33.8	60.2	33.1	32.8	51.0	35.3	26.4	44.0	27.8	65.3
supervised	100	53.5	81.3	58.8	39.7	59.5	43.3	38.2	58.2	41.2	74.6
MoCo [18]	200	55.9	81.5	62.6	39.4	59.1	43.0	38.5	58.3	41.6	75.3
SimCLR [8]	1000	56.3	81.9	62.5	39.8	59.5	43.6	38.4	58.3	41.6	<u>75.8</u>
MoCo v2 [9]	800	57.6	82.7	64.4	40.4	60.1	44.3	39.5	59.0	42.6	76.2
InfoMin [30]	200	57.6	82.7	64.6	40.6	60.6	44.6	39.0	58.5	42.0	75.6
InfoMin [30]	800	57.5	82.5	64.0	40.4	60.4	44.3	38.8	58.2	41.7	75.6
PixPro (ours)	100	58.8	83.0	66.5	41.3	61.3	45.4	39.6	59.2	42.8	76.8
PixPro (ours)	400	60.2	83.8	67.7	41.4	61.6	45.4	40.5	59.8	44.0	77.2

+2.6 mAP

+0.8 mAP

+1.0 mAP

+1.0 mloU

From Instance-Level to Pixel-Level Learning

Previous pre-text tasks: instance discrimination

pixel-level pretext task

Pixel-Level Contrastive Learning

pixel discrimination

an image

Pixel-to-Propagation Consistency

an image

Pixel-to-propagation consistency

Pixel-to-Propagation Consistency

- Pixel contrast: spatial sensitivity
- Propagation: spatial smoothness

Figure 2. Architecture of the *PixContrast* and *PixPro* methods.

Aligning Pre-Training to Downstream Networks

• Using the same architecture as in downstream tasks

An architecture in FCOS detector

Beyond Image-based Unsupervised Pre-training

- Video based pre-training
 - Representative researchers
 - Andrew Zisserman, Weidi Xie, Xiaolong Wang, Alexei Efros et al

Multi-modality pre-training

Human never learn from visual signals alone. Vision

Self-supervised learning on multi-modalities

Take-Home Message

Enjoy the "cake"

- "Pure" Reinforcement Learning (cherry)
- ➤ The machine predicts a scalar reward given once in a while.
- ► A few bits for some samples
- Supervised Learning (icing)
- ► The machine predicts a category or a few numbers for each input
- ► Predicting human-supplied data
- ► 10→10,000 bits per sample
- Self-Supervised Learning (cake génoise)
- ➤ The machine predicts any part of its input for any observed part.
- ▶ Predicts future frames in videos
- ► Millions of bits per sample

Reference

- [1] Yann LeCun. Self-Supervised Learning. AAAI 2020 Turing Talk https://drive.google.com/file/d/1r-mDL4IX_hzZLDBKp8_e8VZqD7fOzBkF/view?usp=sharing
- [2] Linda Smith, Michael Gasser. The Development of Embodied Cognition: Six Lessons from Babies, 2005
- [3] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. CVPR, 2020
- [4] Andrew Zisserman. Self-Supervised Learning. 2018 https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf
- [5] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative unsupervised feature learning with convolutional neural networks. NeurIPS, 2014
- [6] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. CVPR, 2018
- [7] Bin Liu, Zhirong Wu, Han Hu and Stephen Lin. Deep Metric Transfer for Label Propagation with Limited Annotated Data. CVPRW, 2019
- [8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for Contrastive Learning of Visual Representations. ICML, 2020
- [9] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton. Big Self-Supervised Models are Strong Semi-Supervised Learners. NeurIPS, 2020

- [10] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko. Bootstrap your own latent: A new approach to self-supervised Learning. NeurIPS, 2020
- [11] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. NeurIPS, 2020
- [12] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, Phillip Isola. What makes for good views for contrastive learning. NeurIPS, 2020
- [13] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang, and Han Hu. Parametric Instance Classification for Unsupervised Visual Feature Learning. NeurIPS, 2020
- [14] Contrastive Learning with Stronger Augmentations. ICLR, 2021 submission https://openreview.net/forum?id=KJSC_AsN14
- [15] Nanxuan Zhao, Zhirong Wu, Rynson W.H. Lau, Stephen Lin. What makes instance discrimination good for transfer learning? Tech report 2020 https://arxiv.org/abs/2006.06606
- [16] Xinlei Chen, Kaiming He. Exploring Simple Siamese Representation Learning. Tech report 2020. https://arxiv.org/abs/2011.10566
- [17] Zhenda Xie, Yutong Lin, Zheng Zhang, Yue Cao, Stephen Lin, Han Hu. Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning. https://arxiv.org/abs/2011.10043