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Video Stabilization and Completion
Using Two Cameras

Jie Zhou, Senior Member, IEEE, Han Hu, and Dingrui Wan

Abstract—Video stabilization is important in many application
fields, such as visual surveillance. Video stabilization and com-
pletion based on a single camera have been well studied in recent
years, but it remains a very challenging problem. In this paper, we
propose a novel framework to produce a stable high-resolution
video for visual surveillance by using two cameras, in which
one static camera serves to capture low-resolution wide-view-
angle images, and the other is a pan-tilt-zoom camera to capture
high-resolution images. Different with using a single camera, the
interesting target can be detected and tracked more effectively
and much more high-resolution information can be utilized for
the stabilization and completion by using two videos from two
cameras. A three-step stabilization approach is designed to deal
with the resolution’s discrepancy between two synchro videos
and a four-stage completion strategy is taken to utilize more
high-resolution information. Experimental results show that the
proposed algorithm has a satisfying performance.

Index Terms—High-zoom video, video completion, video sta-
bilization, visual surveillance.

I. Introduction

H IGH-RESOLUTION videos are useful and important
for visual surveillance. Compared with low-resolution

ones, high-resolution videos can provide more detailed infor-
mation which can be used for object identification, behavior
and activity analysis, as well as security evidence collection.
However, due to the movement of targets and camera, many
original high-resolution videos are unstable and the interesting
objects might be incomplete in the view. Thus, it is needed to
reproduce stable high-resolution videos from original unstable
ones.

Single static camera is unsuitable for capturing high-
resolution video with moving targets, because image resolution
conflicts with the scope of field of view (FOV). Camera
should be kept in a low-zoom level to maintain the target
staying in FOV. Using a single active camera, such as a
pan-tilt-zoom (PTZ) camera, could solve the above conflict
by changing its view angle [1]–[5]. However, high resolution
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video captured by an active camera with a high zoom level is
usually unstable and incomplete, because: 1) a same angular
speed of camera movement will cause faster pixel movement
for high-zoom capturing than that for low-zoom capturing,
and 2) both automatical and manual camera controls are prone
to cause overshoot and undershoot due to the time delay in
mechanical movement.

In this paper, we propose a system to produce a stable
high-resolution video by using two cameras, in which one
static camera captures a wide-view-angle video with a low
resolution (low-zoom) but a large FOV (i.e., wide view angle),
and the other one is a PTZ camera to capture high-resolution
images at a high zoom value. The active PTZ camera is
controlled by either the wide-view-angle camera or manual
operation. Since the discrepancy in resolution between two
synchro videos might increase the registration difficulty, we
propose a three-step stabilization approach to deal with it.
In order to make full use of the high-resolution information,
we propose four types of image completion strategies: current
high-resolution image inpainting; high-resolution background
model inpainting; sample patch with motion field based fore-
ground inpainting and current scaled low-resolution image
inpainting. Compared with the systems of using a single PTZ
camera, this configuration has the following advantages for
high-resolution video stabilization and completion.

1) The interesting target can be easily segmented, de-
tected, and tracked in the static low-resolution wide-
angle views. Then by registering the high-resolution
image to the low-resolution image, the task of stabi-
lization and completion is much easier even when the
correspondences among successive high-zoom images
are failed to calculate.

2) By using the low-zoom views as a bridge, much more
high-spatial-resolution information can be found for the
inpainting, which is difficult or impossible in high-
zoom views directly; furthermore, the low-resolution
image information from the static camera can serve as
the safeguard to guarantee the integrity of the output
video, when there is no available high-resolution infor-
mation.

This paper is organized as follows. Section II describes an
overall framework of the proposed system. In Section III, the
details of video stabilization are discussed. From Sections IV
to VI, the steps of completing are described. The experimental
results are provided in Section VII. In Section VIII, we
summarize this paper with some conclusions.

1051-8215/$26.00 c© 2011 IEEE
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Fig. 1. Example: (a) It
L with the target region, (b) It

H , and (c) optimal output, It
out. ko = 5.

II. Framework Overview

We denote It
L and It

H as the low-resolution and high-
resolution image at the tth frame, It

out as the output image. The
video stabilization and completion has three goals as follows.

1) The center of interesting target should be kept near the
image center of resulted video, and the target’s motion
should be smooth.

2) The image of each frame should be intact, i.e., there is
no unfilled part in the image.

3) The resulted video should contain as more high-
resolution information from the high-resolution camera
as possible rather than low-resolution contents from the
low-resolution camera.

The FOV of It
out corresponds to a rectangle region in It

L, which
is called the target region. We first determine the target region
(the initial target region is assumed as known, which can
be marked manually by the human inspector or determined
by using automatic human detection and behavior analysis
technologies), and then fill it with high-resolution information
as more as possible. The scale between It

out and the target
region is called the “output magnification factor” which is
denoted by ko. An example is provided in Fig. 1.

We denote Mt
LH as the mapping model between It

L and It
H .

If Mt
LH is known, the completion can be achieved by warping

the high-resolution images into It
out. In many cases, It

H cannot
fill in all pixels in It

out, when the FOV of It
H does not cover

the target region, or It
H is considered to be invalid due to

blurriness. So image completion should be carried out to keep
the output video intact.

The flowchart of the proposed algorithm is shown in Fig. 2.
The main procedures of stabilization (Mt

LH ’s estimation) and
completion (region inpainting) are described as follows.

Stabilization: Mt
LH ’s estimation

1. feature-based method is used to calculate a rough
affine model between It

L and It
H ;

2. pixel-based alignment is adopted to refine the model;
and

3. neighborhood information is used to smooth the
model.

Completion: region inpainting

1. foreground and background segmentation in It
L;

2. estimating high-resolution background It
HB using

Ii
H , i = 1, 2, · · · , t + N and Mi

LH ;

Fig. 2. Flowchart of the proposed algorithm.

3. step-by-step inpainting according to their priority
levels:

1) inpainting with current It
H and Mt

LH ;
2) for background region, use high-resolution

background It
HB;

3) for foreground region, use sample patch based
motion inpainting algorithm;

4) for other non-filled region, inpainting with the
interpolated It

L;

4. post-processing.

III. Stabilization

In our study, we align images from two cameras at each
time-stamp. The main difficulties of the algorithm are as fol-
lows: 1) the pose parameters of cameras are usually unknown,
as a result, the searching range for the registration algorithm
might be huge without prior-knowledge; 2) for different FOVs,
a same camera may do different illuminant adjustments, which
may cause intensity gaps; and 3) it is hard to obtain a quite
precise registration model because of the large discrepancy in
image resolution.

Traditional image registration methods can be mainly clas-
sified into two categories: feature-based approaches and pixel-
based approaches (also called the “direct method”). References
[6]–[8] made some extensive reviews and comparisons. In
these researches, feature-based approaches are regarded to be
less accurate than the pixel based ones, because the distribution
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of feature points in the overlapping region is unpredictable. On
the other hand, pixel-based approaches usually need a good
initial model and demand that the intensities in two images
to be comparable, which might not hold for real applications
[6]–[8]. Here, we will propose a method to combine feature-
based approach and pixel-based approach. We first use feature-
based approach to get a coarse model, which can be used to do
intensity adjustment and as the initial model for pixel-based
ones. In this way, we can overcome the shortcomings of these
two methods.

Roughly speaking, there are two objectives for video stabi-
lization: 1) the interesting target should be located near image
center, and 2) the target’s motion should be as continuous and
smooth as possible. We use the mean-shift tracking algorithm
[9] to obtain the trace of the interesting object. In order to
obtain more accurate locations of the interesting target and
smooth the variation of the target’s location, we average the
centers of the interesting object within 50 neighboring frames
to decrease the computational errors. The mean center is set
to be the center of target. Since this system is designed for
visual surveillance, the size of the same interesting object does
not change a lot in the low-resolution camera. So the size of
target region can be set as constant. The output magnification
factor, ko, is about 5 in our experiments.

Since It
out and the target region only have one scaling

relation with scaling factor ko, we calculate the mapping
model (Mt

LH ) between It
H and It

L instead. For long-distance
surveillance, the disparity between two views can be neglected,
because the baseline width is much smaller than the distance
of the scene to the cameras (it should be noted that the affine
model will be not accurate enough when the target object is
near the camera). Actually, if we assume that the distance
between the target and camera is about 100 m; zoom levels
of two cameras are less than 10, which is the highest zoom
factor of the high-resolution camera in our experiments); the
baseline is about 0.4 m and the depth varies more than 20m,
the corresponding disparity varies only 1-pixel [10]. Therefore,
we can choose an affine model for the mapping from It

H and
It
L.

We utilize a three-step algorithm to estimate the registration
model. First, we use the sparse feature points matching method
to get a rough registration model, which can be used as an
initial guess for the following refinement. The rough model
also provides a rough overlapping FOV in which the intensity
mapping between two images will be estimated to solve the
intensity inconsistence problem. Then, a refined model can
be obtained by using the pixel-based approaches. Finally,
we adopt a post process to smooth the refined model using
neighboring high-resolution images to improve the stability of
the estimated model among frames.

A. Step 1: Rough Model Estimation

Since the zoom ratio between It
L and It

H is unknown, we
choose scale-invariant feature transform (SIFT) [11] feature
descriptor for the registration. We only compute these key
points in the target region of It

L to reduce computation. In
key points matching, the approximate nearest neighbors kd-
tree package [12] is utilized. The random sampling consensus

(RANSAC) [13] strategy is employed to estimate an affine
model Mt

LH1 from It
L to It

H by matching these points (the
subscript “1” indicates that it is a rough model). If the number
of matches is less than 10, we set Mt

LH1 to be invalid, and skip
the next two steps. A matching example is shown in Fig. 3(a).

We use a 1-D mapping ([0, 255] → [0, 255]) to make the
intensities in It

L and It
H comparable, so that most traditional

pixel-based image registration methods can be applied. The
convex hull of matched key points is defined as the testing
region for each image. A histogram equalization method is
used to compare the two cumulative intensity histograms in
testing regions. We choose a three-piece linear mapping model.
The middle part contains 90% pixels [see Fig. 3(b)]. Fig.
3(c) shows an example of both original and adjusted intensity
histograms.

B. Step 2: Refined Model Estimation

The rough model, Mt
LH1, estimated in Step 1, is used as an

initial value in the iterative algorithm of pixel-based estimation
(direct method). In order to reduce the computation, first, we
convert It

H into It
H adj via the reverse transform of Mt

LH1. The
registration model between It

H adj and It
L should be close to

a 3 × 3 identity matrix. Second, the intensity of It
L is adjusted

according to the intensity mapping model, and we denote it by
It
L adj . After that, the gradient based Hessian matrix is utilized

to iteratively solve the following optimization problem [14]:

MI = arg min
M

∑
i

∥∥It
H adj(Mxi) − It

L adj(xi)
∥∥ (1)

where M is a 3 × 3 affine matrix with an initial value M0 =
I3×3. The range with respect to the summation is the target
region in It

L adj . In our system, MI will be considered to be
invalid, if it does not satisfy the two constraints: 1) rotation
and scale constraint: ‖RM

2×2 −I2×2‖∞ < 0.3, and 2) translation
constraint ‖tM2×1‖∞ < 4, where

[
RM

2×2 tM2×1

]
is the first two

rows of MI . If MI is valid, we have the refined registration
model as Mt

LH2 = Mt
LH1MI ; otherwise, Mt

LH2 is also invalid,
and the next step will be skipped. Fig. 3(d) shows an example
of warping It

H onto It
L via the estimated Mt

LH2.

C. Step 3: Model Smoothing

Considering the uncertainty of Mt
LH2 mentioned above, we

smooth the refined registration model to improve the stability.
The final smoothed model is denoted by Mt

LH .
Take the ith frame for example. We consider 2N + 1

neighboring frames (N = 5 in our experiment). We denote
j = i − N, i − N + 1, · · · , i + N as the indexes of neighboring
frames, M

j
LH2 as the refined model at the jth frame, and Mi

j as
the homographic model from I

j
H to Ii

H . The smoothed model
Mi

LH can be computed by

Mi
LH =

i+N∑
j=i−N

ωjδjM
i
jM

j
LH2 (2)

where ωj is Gaussian weight and δj is the characteristic
function satisfying

δj =

{
1, if Mi

j and M
j
LH2 are both valid

0, otherwise
(3)
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Fig. 3. Image registration result for the images in Fig. 1. (a) Feature points matching with the left image is the magnified target view of It
L with a magnification

factor 5, and the right one is It
H . (b) Calculated piece-wise linear mapping model. (c) Intensity histogram in (polygonal) testing region of It

H and It
L (original

and adjusted). (d) Warping It
H onto It

L by the refined mapping model, Mt
LH2.

and

i+N∑
j=i−N

ωjδj = 1. (4)

Physically, the smoothing method means that, for a station-
ary point P , assume p

j
H is the image coordinates in I

j
H ; p

j,i
H is

the transformed point from p
j
H by Mi

j . After model smoothing,
the final location of P in Ii

H will be the Gaussian average of
all p

j,i
H .

The only unknown parameter in (2) is Mi
j . Since I

j
H and

Ii
H (i �= j) are captured at different time, foreground motion,

especially independent movement may affect the precision of
Mi

j calculation. So we remove the foreground in It
H in advance.

This procedure can be done easily. While tracking the object
in It

L, we use the running average method [15] to obtain the
background model. So the foreground region in It

L can be
detected. The corresponding foreground in It

H can be also
located by the refined model Mt

LH2. If M
j
LH2 is invalid, δj = 0,

and therefore, there is no need to calculate Mi
j .

The alignment between two images only concerns back-
ground image regions. We use the SIFT features again (which
have already been extracted in the previous procedures) to
estimate an affine homographic model, Mi

j . Note that, as we
take more frames’ information into consideration, even when
the estimation of some Mi

j fails (e.g., too few matched points),
the smoothing algorithm can still work. In the worst case,
Mi

LH = Mi
LH2. If Mi

LH2 is invalid, the smoothing step will be
skipped.

Blurring often happens in high-resolution image sequence
due to fast camera movement. Severe blurriness can intensely
affect the estimation of Mt

LH and Mi
t . Sometimes these frames

might also yield valid Mt
LH . However, these high-resolution

information is not what we need. Since the absolute blurriness
is difficult to calculate, we use the relative blurriness [1], that
is

bt =
1∑

pt

[
dx2 (pt) + dy2 (pt)

] (5)

where dx(·) and dy(·) are gradients along x-direction and y-
direction. The greater the gradient, the smaller the relative
blurriness will be. We only consider pt in the background
region of It

H . The tth frame will be considered to as blurred,
if bt > 1.3 ∗ min{bt−1, bt+1}. In this case, we set Mt

LH invalid.

IV. Completion

The goal of completion is to obtain a complete video output.
To this end, we have designed a four-step strategy: 1) direct
inpainting with current high-resolution image; 2) background
inpainting with the updating high-resolution mosaic back-
ground; 3) foreground inpainting based on a reference sample
patch and the corresponding motion field; and 4) inpainting
with the scaled low-resolution wide-view-angle image for the
remainder regions. After that, a post-processing step is taken
to remove the artifacts between blocks.

The current high-zoom image is the best source to fill in
It

out. However, It
H might not cover all pixels in It

out. This could
happen when: 1) the FOV of It

H does not cover all the target
region; 2) It

H is considered to be invalid because of large
blurriness; or 3) Mt

LH is invalid. So it is necessary to consider
using different source image information to fill in It

out.
Intuitively, high-resolution information and credible infor-

mation has precedence over others. In our study, we propose
four inpainting priority levels to complete It

out. In order to
make an intuitive explanation, two examples are provided in
Fig. 4 to illustrate the four kinds of inpainting. The four kinds
of textures in the fourth column indicate the inpainting priority
level from 1 to 4, respectively.

A. Priority-1: Direct High-Resolution Inpainting

The priority-1 inpainting is based on current high-zoom
image It

H and its corresponding Mt
LH . As we discussed in the

previous section, if Mt
LH is valid, the homography between

It
H and It

out will be available, then we can directly warp It
H

onto It
out, and the overlapping region in It

out will be filled by
current high-resolution information.

This inpainting step will be skipped in the following cases:
1) Mt

LH is invalid; 2) the warped It
H has no overlapping region

with It
out; and 3) It

H is severely blurred (blurriness is assessed
as we discussed). In Fig. 4, region R1 is inpainted with this
type. Fig. 4(a) has R1 because It

H contains parts of the target
region. Fig. 4(b) has no R1 because It

H is considered as a
blurred one.

B. Priority-2: Background Inpainting

After inpainting with It
H , a two-layer inpainting strategy is

used: the foreground (moving objects) layer and background
(static) layer [2]. The priority-2 inpainting is for background
layer.
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Fig. 4. Two examples to illustrate the four kinds of inpainting. (a) It
H does not fully contain the interesting object. (b) It

H is severely blurred. In (a) and
(b), images from left to right are wide-view-angle image (It

L), high-resolution image (It
H ), output image (It

out), and the inpainting type mask. Each type has
a different mask shown in (c), where Ri, i = 1, 2, 3, 4 indicates the four inpainting types, respectively.

If Mt
LH is available, the background region in It

H can be
obtained from It

L. This background information can be used
to update the high-resolution background model, It

HB. It
HB

contains the high-resolution background information of all the
past frames and the next N neighboring frames, i.e., frame
1, 2, · · · , t+N. In our experiments, we set N = 50. The scaling
factor from It

L to It
HB is the same as the output magnification

factor, ko.
For each high-zoom image, It+N+1

H , if Mt+N+1
LH is valid, we

warp the background pixels of It+N+1
H into It

HB. An attenuation-
weighted updating strategy with attenuation factor 0.5 is used
to update It+1

HB. Fig. 5 shows a high resolution background
image updated by the whole image sequence. After priority-
1 inpainting, if the unfilled region in It

out contains some
background pixel, we directly use the corresponding image
information in It

HB to fill in. In Fig. 4, region R2 indicates
priority-2 inpainting.

C. Priority-3: Foreground Inpainting

For the unfilled regions belonging to foreground layer,
we use the reference sample patch with motion field based
method to implement the priority-3 inpainting. Different from
conventional image inpainting methods [1]–[3], our algorithm
utilizes two image sequences with different resolution. We will
describe its details in Section V.

D. Priority-4: Low-Zoom Image Inpainting

After the above three inpainting steps, some regions might
still be unfilled, such as the non-interesting foreground region
in Fig. 4(b) (R4), and the background which is not covered
by high-resolution background model in Fig. 4(a) (R4), and so
on. We use the magnified low-resolution image with bilinear
interpolation to fill in these regions. The reason why we
use bilinear interpolation rather than other super-resolution
methods is mainly due to its low computational cost. This

inpainting step can be viewed as a safeguard to maintain the
integrity of the output image.

V. Foreground Inpainting

Particularly, foreground inpainting is the most difficult
among the above four steps. Some relative techniques have
been reported in the previous research on video stabiliza-
tion and completion (using single image sequence). Image
mosaicing, which is a simple way for inpainting, does not
consider the non-planar scene and foreground motion [16],
[17]. So it can only be used in small hole filling with small
motion. Jia et al. [2] used a two-layer approach to inpaint
foreground with the most similar patch in the previous frames.
However, it needs the cyclic motion assumption. Wexler et
al. [3] used a nonparametric sampling-based approach to deal
with this problem, which divided the target patch into smaller
pieces and inpainting each piece from all previous stored
patches. Compared to the previous approaches, it does not
need cyclic motion assumption or depend on a single frame.
However, it is computationally expensive. Matsushita et al.
[1] proposed a motion inpainting method using a neighboring
patch and a local motion field. Current local motion is esti-
mated in a neighborhood. An equivalent constraint condition
is to preserve objects’ boundaries. One advantage of this
approach is that, it does not need a long sequence to find
the best similar patch or sample pieces. Instead, it needs
available neighboring frames to propagate the motion within
the first order approximation of Taylor series expansion. This
approximation may not hold for large motion between non-
neighboring frames.

In our study, a novel method based on reference sample
patch (SP) and relative motion filed is proposed to inpaint the
foreground. The main difference from the previous approaches
is that, an SP contains both high-resolution and low-resolution
image information in previous frames, so that the foreground
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Fig. 5. (a) Magnified low-resolution background image. (b) High-resolution background image.

inpainting will be more robust and efficient, even for the case
that several successive images need inpainting.

An SP is a pair of image blocks {SPL, SPH } with the same
FOV from It

L and It
H . Both SPL and SPH contain the whole

interesting target with background removed. For long-distance
surveillance, we assume that the size of interested target does
not change significantly. So we fix the block size of SPL to
be 40 × 40, and the size of SPH is ko (output magnification
factor) times that of SPL. An example of SP is shown in Fig.
6(a).

The SP pool, denoted by {SPi} = {SPi
L, SPi

H } (i is the index
of samples), is formed by SPs from those frames satisfying the
following three conditions (taking the t-frame for example):
1) Mt

LH should be valid; 2) It
H should contain the whole

interesting target; and 3) It
H is not blurred. We model the SP

pool as a FIFO queue with the size of NSP. Note that if the
motion of the interesting target is cyclic, it will be better to set
NSP to be larger than the period of the movement, so that the
latest periodic motion is likely to be preserved. In our study,
the period is about 25 frames (for human walking), and we
set NSP = 60.

The motion field is represented by optical-flow field be-
tween the reference frame and destination frame with the
same scale as SPH . In our study, we consider not only the
information of current frame with its corresponding reference
SP, but also that of neighboring frames, so that both spatial
accuracy and temporal continuity can be guaranteed to some
extent.

Assume that the jth frame is the inpainting target. The
foreground inpainting procedure includes the following three
steps: 1) find a proper reference SP, i.e., SPrefj ; 2) estimate
the motion field, Fj

H , from SP
refj

H to the goal image, I
j
out; and

3) construct I
j
out by SP

refj

H and Fj
H with proper interpolation

and post processing.

A. Producing a Reference

Take the jth frame for example. Since we know the location
of target in I

j
L, we only consider the image region containing

the whole target, which is denoted by Sub(Ij
L). We compute the

similarities between Sub(Ij
L) and all SPi

L (i = 1, 2, · · · , NSP)
in the SP pool. As the SP pool is timely updated, the difference
in rotation and scaling can be ignored. We align two images

Fig. 6. (a) Example of SP. (b) Top three SPs with the highest similarities.

with a translation model for simplicity, and then use the mean
absolute difference (MAD) criterion to calculate the similarity.

For a rigid object, the center of the object can be used to
calculate the translation parameters. However, for a non-rigid
object, the center has less consistency, such as the pedestrian.
The object center may not be precise enough. Fortunately,
it can be used as an initial value for iterative estimation of
the translation parameters [14], [18]. This computation cost is
low, since the size of image patch is very small. In order to
improve the efficiency, the gradient information of each SP is
pre-calculated and saved in company with SPL.

For the ith SP, we apply the calculated translation model on
Sub(Ij

L), and calculate the MAD score between transformed
image and SPi

L for all overlapping pixels. If the total amount
of overlapping pixels is less than 60% of the foreground area
of Sub(Ij

L) or SPi
L, we set the MAD score to be infinity. If

the smallest MAD score among all SPs is smaller than ThMAD

(in our experiment, ThMAD = 20), the corresponding SP will
be selected as the reference patch, which is denoted by SPrefj .
The corresponding translation model will be recorded as M

ref
j ;

otherwise, we deem that frame-j has no reference SP, i.e.,
SPrefj is invalid.

An example is shown in Fig. 6(b). We list three SPs with
the smallest MAD scores. From the frame index, we can see
that these similar SPL are from the very neighboring frames
or another motion period.

B. Estimating Fj
H

Assume that the jth frame needs foreground inpainting.
When SPrefj is valid, we estimate Fj

H so that I
j
out can be

recovered from SP
refj

H by Fj
H .
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If we only use the information of frame-j and SPrefj , the
problem will be simple, but have two drawbacks: 1) inter-
frame information is not considered, so temporal continuity
might not be preserved well, and 2) this motion field is
calculated in low resolution, small error might cause large
displacement in the output high-resolution image. In our study,
neighboring information is used in estimating Fj

H so that both
temporal continuity and spatial accuracy are considered to
some extent. We propose a global optimization framework to
estimate Fj

H

min E = α
∑

(x,y)∈V

ω1(x, y)
[
(u − uH )2 + (v − vH )2

]
+ β

∑
(x,y)∈V

ω2(x, y)
[
(u − uL)2 + (v − vL)2

]

+
∑

(x,y)∈V

[(
∂u
∂x

)2
+

(
∂u
∂y

)2
+

(
∂v
∂x

)2
+

(
∂v
∂y

)2
] (6)

where V is the valid image region, (x, y) is a pixel in V . u

and v represent u(x, y) and v(x, y) for short, which are the x

and y-components of Fj
H at pixel (x, y), respectively.

The first part considers the inter-frame high-resolution
information. We use VH to represent the estimated high-
resolution optical-flow field which contains local relative mo-
tion with respect to SP

refj

H , and (uH, vH ) indicates the optical
flow at (x, y). ω1(x, y) is the weight, which is defined as
ω1(x, y) = exp (−‖(uH, vH )‖/10). VH is estimated from SPrefi

H

(i = j − 1, j, j + 1). We first remove the global motion
(e.g., an affine model) from SP

refj−1

L and SP
refj+1

L to SP
refj

L ,
respectively; then we calculate the local motion field, Vj,j−1

and Vj,j+1; finally, we take the 1-order temporal continuity
assumption, i.e., Vj,j−1(x, y) = −Vj,j+1(x, y), to calculate
VH = 1

2

(
Vj,j−1 + Vj,j+1

)
[see Fig. 7(a)], so the temporal

continuity is considered. Note that the global motion can be
efficiently computed by multiplying several 3 × 3 matrix via
SPrefi

L and Sub(Ii
L) (i = j − 1, j, j + 1).

The second part considers the inner-frame low-resolution
information. We use VL to represent the magnified image
from Fj

L using bilinear interpolation [see Fig. 7(b)]. Then it
has a same resolution with Fj

L. (uL, vL) indicates the optical
flow at (x, y) in VL. ω2(x, y) is the corresponding weight.
In our experiment we set ω2(x, y) = 1. VL could supply
the local information with a larger scale than VH because
of the limitation of image resolution. Although this seems to
be redundant, when neighboring SP is not available, VL will
play a dominant role in the estimation of Fj

H . α and β are
utilized to adjust the weights of first two parts in (6). When
neighboring SPs are valid, α should have a greater value, such
as α = 2β; otherwise, we set α = 0, i.e., the degenerated case.
In our study, we use the pyramidal Lucas–Kanade optical flow
algorithm [19] to calculate VH and VL.

The third part considers the smoothness of the estimated Fj
H ,

so that spatial continuity can be guaranteed. A general way to
solve this problem is to calculate the partial derivatives of (6)
with respect to u and v, and then use the 3 × 3 Laplacian
operator for discretization [20]. In our implementation, we
have already considered the smooth factor in calculation of
both VH and VL, so we ignore this part for simplicity.

Fig. 7. Block diagram for computing (a) VH and (b) VL.

C. Recovering Output Image

After Fj
H is estimated, we apply this motion field on SP

refj

H ,
and then bilinear interpolation is employed to fill I

j
out with

the high-resolution foreground information. Fig. 8 shows an
example of foreground inpainting.

VI. Post Processing

Post processing is needed to adjust the intensities after
It

out inpainting, because even when all pixels in It
out are

perfectly inpainted, the intensity might still be inconsistent
in two aspects: 1) the spatial inconsistence near the junction
among neighboring regions with different inpainting types, and
2) the temporal inconsistence between successive frames. This
phenomenon might affect the visual effect sometimes.

There are four kinds of source inpainting information
corresponding to the four inpainting types, which belong to
It
H , SPreft

H , It
HB, and It

L, respectively. In order to smooth
the intensities from one inpainting region to another, it is
necessary to set a benchmark, so that we can adjust the
intensity according to its inpainting type. While it is difficult
to build an exact benchmark, we choose one from It

H , SPreft

H ,
It
HB and It

L as an approximation.
In our study, we take It

HB as the benchmark. It
L is in low

resolution, and it is unsuitable to be the benchmark for high-
resolution output. It

H and SPreft

H are with a high resolution, but
the image intensity is not stable when FOV changes. The high-
resolution background image, It

HB, is constructed by several
Ii
H , and it can be approximately regarded as an average of

high-resolution images. So it is much better to choose It
HB as

the benchmark.
We use different ways to adjust the intensity for different

inpainting types by using the benchmark. For regions inpainted
from It

H , we calculate the intensity mapping using the piece-
wise linear model. For regions inpainted from It

L, we use a
similar method, except for the regions inpainted from both
SPreft

H and It
HB, where SPreft

H belongs to the foreground and it
has no comparable pixels with respect to It

HB.
In addition, the boundary between two regions with different

inpainting types where the texture might be unsmoothed. In
order to solve this problem, we define a transition region
(which is dilated from this boundary with a 5 × 5 structuring
element), and smooth it with a 3 × 3 mean filter. Note that,
this smoothing will damage the high-resolution information,
so those pixels belong to foreground and are inpainted with
high-resolution information will remain unchanged.
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Fig. 8. Example of foreground inpainting. (a), (b) Original low and high-resolution images (at frame j = 705). (c) From left to right: SP
refj−1,j

H , SP
refj

H , and

SP
refj+1,j

H , where the reference SPs are obtained from frames 677, 679, and 680. (d) F705
H with SP

ref705,705
H . (e) Scaled image of (a) with bilinear interpolation.

(f) Final output image with foreground inpainting.

Fig. 9. Examples of post processing. (a) It
H adjustment. (b) It

L adjustment.

Fig. 9 shows two examples of post-processing. After inten-
sity adjustment, the output images seem more clear and more
sharp. In Fig. 9(a), there is a significant gap in the middle
of the image before intensity adjustment, and after intensity
adjustment, it is better. In Fig. 9(b), two wheels of the bicycle
are clearer after intensity adjustment.

VII. Experimental Results

In our experiment, the system runs on one computer with
Intel 3.0G CPU and 1.5 G memory. Two SONY EVI D70
cameras are utilized as the video capture device. The size of
captured images is 320 × 240. We choose the outdoor scene
for long-diatance surveillance. The usage of output video is
for activity analysis (however, the output video can reach a

higher resolution for human face recognition if using cameras
with higher resolution (e.g., 1280*960). The width of baseline
(distance between two cameras) is 0.4 m, the distance from
target to camera center is about 100 m.

We have carried out experiments on two real data sets.
Some frames from these two data sets are shown in Fig.
10. The experimental parameters are kept same for all these
experiments.

The first row in Fig. 10 is low-zoom wide-view-angle
images which contain the interesting targets for all frames.
The second row shows the corresponding high-zoom images.
In the experiments, the high-zoom active camera is manually
controlled. Actually, as the interesting target is well tracked
by the other camera, it is feasible to automatically control
the active camera. Since the proposed approach should be
tested under different situations, we manually simulate the
following cases: the interesting target is invisible or half-
visible in high-zoom image for some frames, and the high-
zoom image is severely blurred due to fast camera movement,
and so on. The output image In

out is shown in the third row,
and the output magnification factor is ko = 5. The size of
interesting target (e.g., pedestrian) in the output image is
about 20 × 40 pixels, which is enough for human activity
analysis. The corresponding visual field is denoted by a
rectangle in the first row. From the output videos, we can
observe that the interesting target can be kept near the image
center and the target’s motion is very smooth. For quantitative
demonstrations, we compute the average Euclidean distance
between the interesting target and the image center, d, and we
also use the standard variations of target’s locations relative
to the image center in the horizontal and vertical directions,
σx and σy, to measure the video’s smoothness. In the original
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Fig. 10. Experimental results: five frames from two sets of experimental sequences, respectively, in (a) and (b). The first row is the panorama low-zoom
view, In

L, the second is the high-zoom view, In
H , and the third is the output stabilized and completed image, In

out.

high-resolution videos, d = 68.8 pixels, σx = 64.3 pixels, and
σy = 34.3 pixels. By using the proposed algorithm, d = 4.1
pixels, σx = 2.4 pixels, and σy = 2.3 pixels for the resulted
videos.

A. Impact of Zoom Variation on Video Stabilization

The precision of estimating of Mt
LH is related to the scale (or

zoom) ratio between It
L and It

H . For the two data sets (Data1
and Data2) in Fig. 10, the scale ratios are about 1:4.2 and
1:5.2, respectively. Generally speaking, the greater the ratio,
the registration will be easier. So we only test the performance
on the same data sets with smaller ratio. We manually reduce
the size of It

L before alignment, and count the frames with
valid Mt

LH . For the two data sets, the total numbers of frame
are 1023 and 610, respectively. Table I shows the experimental
result.

This experiment shows that when the discrepancy of scale
ratio between It

L and It
H becomes larger, the probability of

obtaining valid Mt
LH is likely to decrease. When the reduction

factor is 0.6, the scale ratios of two data sets are about 1:7

TABLE I

Proportion of Frames with Valid Mt
LH When Different

Reducing Factor of It
L Is Chosen

Reducing factor Data1 Data2
1.00 0.9844 0.9016
0.90 0.9179 0.8262
0.75 0.7937 0.6098
0.60 0.1642 0.1459

and 1:8.7 (the size of interesting target in It
L is about 5 × 12

pixels), so the computation Mt
LH fails in many frames. The

extreme case is that no frame has valid Mt
LH . It means that

the relationship between the two image sequences will be
unavailable. As a result, the problem degrades to the single
camera video based stabilization and completion problem.
When the number of frames with invalid Mt

LH increases,
Priority-1 inpainting will be less frequently used, and the other
three inpainting types will be used more often.
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Fig. 11. Testing of high-resolution inpainting. (a) Ground truth. (b) Inpainting result by assuming that Mt
LH is invalid. (c) Absolute difference between

(a) and (b).

B. Accuracy of High-Resolution Inpainting

We select several successive frames with good It
H (i.e.,

it is not blurred and the interesting target is fully visible).
We set the corresponding Mt

LH to be invalid so that It
H

will not contribute to video completion, including supplying
SP, updating high-resolution background model and directly
inpainting. In order to quantitatively evaluate the performance,
we use It

H to generate a ground truth. In this experiment, we
chose 35 frames from Data1. One result is shown in Fig. 11:
part (a) shows the ground truth which is warped from It

H

with Mt
LH , and (b) shows the inpainting result. Since we

only considered the accuracy of high-resolution inpainting, we
compared the gray-level difference between these two images
in those regions with Priority-2 and 3 inpainting method.

We define the inpainting error as the average absolute gray-
level difference between the inpainted image and the ground
truth per pixel. Among the 35 frames, the inpainting error
of Priority-2 is 2.88, and for Priority-3, it is 9.10. The total
inpainting error is 3.33, and Fig. 11(c) shows an error image.
In [1], the authors also used the mean absolute difference
of intensity to evaluate their method and the reported best
difference is about 7.5. So, this result shows that the proposed
high-resolution inpainting method is effective.

C. Comparisons with Single-Camera Based Approaches

A major difference between traditional single-camera based
stabilization approaches and our framework is the definition of
stabilization. Since motion segmentation is difficult for monoc-
ular active camera video, many traditional single-camera based
stabilization algorithms are designed to remove high frequency
camera motion. As a result, the FOV of each stabilized frame
is determined by its neighboring frames. These stabilization
algorithms are also called “camera motion driven.” But in our
framework, we constrain the interesting target should be near
the image center under smoothed camera motion. The FOV of
stabilized frame is determined by the trace of interesting target.
So, we call this “both object and camera motion driven.” This
difference will cause the stabilized videos of the two categories
of approaches to be very different and incomparable.

We compare the (foreground) inpainting method with one
state-of-the-art video stabilization method, the motion inpaint-
ing approach [1]. Some results are shown in Fig. 12.

Motion inpainting method uses information from neigh-
boring frames. It has two assumptions: 1) neighboring Nn

frames should contain enough information for inpainting, and

Fig. 12. Comparison between motion inpainting approach [1] and proposed
foreground inpainting method. From left to right, the four images are
magnified low-zoom image, original high-zoom image, the result of motion
inpainting approach, and the result of our approach. (a) Both approaches work
well. (b), (c) Two failed cases for motion inpainting approach.

2) the motion in inpainted area should coincide with that in
overlapping area. If the inpainted region satisfies the above
two conditions, motion inpainting based method is competent
for image completion, e.g., Fig. 12(a) with Nn = 6; otherwise,
the inpainted image could be incomplete [e.g., Fig. 12(b) with
Nn = 6] or distorted [e.g., Fig. 12(c) with Nn = 12]. In
the proposed framework, even if there is no reference SP
found or the motion field is unable to compute (e.g., non-
cyclic object motion), the case of incomplete image will never
happen because of the Priority-4 inpainting.

On the other hand, in our approach, the calculation of
motion field on reference SP is more like a kind of motion
smoothing, but not prediction. As a result, local large-scale
motion will hardly happen, and consequently, the inpainted
foreground is unlikely to distort much.

Most single-camera based stabilization approaches do not
consider some video segments are missing or contains totally
irrelevant content. So most of these algorithms are based on the
conjunctions of neighboring frames. If some conjunctions are
interrupted, the stabilization will be intermitted. When moving
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object is captured with high-zoom camera in long-distance
surveillance, this case might happen sometimes because of
the unpredictable object motion or unprecise camera control,
e.g., the three frames shown in Fig. 10(b). In this case, it is
unreliable to compute the global motion between neighboring
frames using only high-zoom image sequence. For example,
we calculate the global motion with neighboring size Nn = 6,
the middle 65 frames are totally irrelative. This will cause both
temporal and spatial discontinuity. In our framework, since the
low-zoom image sequence is in use, this temporary blindness
of high-zoom video will not interrupt the whole stabilization.

The experimental data (including input and output
ones) can be downloaded from the website http://ivg.au.
tsinghua.edu.cn/Datasets/Datasets.aspx.

VIII. Conclusion

In this paper, we proposed a new framework to solve
the high-zoom video stabilization and completion problem
by using a static low-zoom wide-view-angle camera and a
synchro high-zoom active camera. It is very suitable for long-
distance surveillance situation where the high-zoomed view is
necessary.

In the proposed framework, the static view can easily
provide the trace of interesting target, which will greatly
facilitate video stabilization, and it will efficiently improve
the accuracy of alignment among high-zoom views, which can
help extracting more available high-resolution information for
the completing. We designed four types of completing methods
to collect as much high-resolution information as possible to
fill the output video and ensure overall video integrity as well.

However, there are also some limitations of the proposed
framework.

1) When the scale difference between the wide-view-angle
image and high-zoom image becomes too large, the
precision of the mapping model is likely to drop.

2) Although the output video is complete and smoothed by
post-processing, temporal discontinuity may still exist
between frames inpainted with different resolution infor-
mation. It might need global spatial-temporal constraint
to achieve a better visual performance. These problems
will be considered in our future study.
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