# Swin Transformer and 5 Reasons to Use Transformer/Attention in Computer Vision

Han Hu Microsoft Research Asia

June 20<sup>th</sup>, 2021

CVPR21, The 3rd Tutorial on "Learning Representations via Graph-structured Networks"

### What is the role of Transformer for computer vision?









### An answer: will also refresh & dominate CV



ImageNet-1K image classification



# Vision Transformer (ViT, 10/2020)

• SOTA performance on Image classification



Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR' 2021

# An answer: will also refresh & dominate CV

#### COCO object detection



#### ADE20K semantic segmentation





# Swin Transformer (03/2021)

• SOTA performance on object detection and semantic segmentation

Transformer (strong modeling power) good priors for visual signals (hierarchy / locality / translation invariance)



Ze Liu et al. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. Arxiv 2021

# 4 years unleash the power of Transformer in CV





Reason I: General modeling capability

|         | Reason II: Complement convolution | 2019.4                               | 2021.1                                           | Reason V: Scalability |
|---------|-----------------------------------|--------------------------------------|--------------------------------------------------|-----------------------|
|         | $\rightarrow$                     | $\rightarrow$                        | $\rightarrow$                                    | $\rightarrow$         |
| 2017.06 | 2017.11                           | Reason III: Strong<br>modeling power | Reason IV: Better connect<br>vision and language | 2021.6                |
|         | Swin<br>purp                      | Transformer: a gener                 | al-                                              |                       |

### Reason I to use Transformer in computer vision

- General modeling capability
  - All concepts (concrete or abstract) and their relationships can be modeled by a graph
  - Modeling arbitrary relationship via <u>verification</u>, which is hard by CNN





### Reason I to use Transformer in computer vision

- General modeling capability
  - Can model all of pixel-to-pixel, object-to-pixel, object-to-object relationships



pixel-to-pixel

object-to-pixel

object-to-object

### Relation Networks for Object Detection (CVPR'2018)





It is much easier to detect the *glove* if we know there is a *baseball player*.

### Relation Networks for Object Detection (CVPR'2018)



Han Hu et al. Relation Networks for Object Detection. CVPR 2018

### Relation Networks for Object Detection (CVPR'2018)

• The first fully end-to-end object detector



back propagation steps

Han Hu et al. Relation Networks for Object Detection. CVPR 2018

# DeTR (ECCV'2020)

• Another end-to-end object detector



Nicolas Carion et al. End-to-End Object Detection with Transformers. ECCV 2020

### Reason II to use Transformer in computer vision

- Complement convolution
  - "Convolution is too local!"
  - Global (Transformer) vs. local (conv.)



### Non-local networks (CVPR'2018)



# The Degeneration Problem of NLNet

- Expectation of Ideally Learnt Relation
  - Different queries affected by **different** key

#### Query





# The Degeneration Problem of NLNet

- What does the Self-Attention Learn?
  - Different queries affected by the **same** keys

Query

Key



### Visualizations on Real Tasks

- 🕂 indicates the query point
- The activation map for different queries are similar
- The self-attention model degenerates to a unary model





Object Detection



Semantic Segmentation

[GCNet, ICCVW'2019]

https://arxiv.org/pdf/1904.11492.pdf

# GCNet (ICCVW'2019, PAMI'2021)

- Find the degeneration issue in computer vision
- Explicitly leverage degenerated formulation for better efficiency



### Disentangled non-local networks (ECCV'2020)

• Solve the degeneration problem



### Reason III to use Transformer in computer vision

convolution layer

- Powerful due to <u>adaptive computation</u>
  - "Convolution is exponentially inefficient!"



#### Transformer layer

composability



channel #1



(1 channel)

# Local relation networks (2019.4)

• Transformer as backbones





Han Hu et al. Local Relation Networks for Visual Recognition. ICCV 2019

### But ... slow in real computation

• Because different queries use different key sets



# Vision Transformer (ViT)

• by Google Brain (2020.10)



Alexey Dosovitskiy et al. an Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR' 2021

# Swin Transformer =

- Transformer
  - Strong modeling power
- + good priors for visual modeling
  - Hierarchy
  - Locality
  - Translational invariance



# Hierarchy

• Processing objects of different scales





Patch/Feature bin

Computation scope of self-attention

Left figure credit by Ross Girshick

# Locality by non-overlapped windows

- Proves beneficial in modeling the high correlation in visual signals (Yann LeCun)
- Linear complexity with increasing image resolution: from  $O(n^2)$  to O(n)



ViT: 256<sup>2</sup>=65536 (Global)

Swin Transformer: 16x16<sup>2</sup>=4096 (Local)

# Locality by non-overlapped windows

- Compared to sliding window (LR-Net)
  - Shared key set enables friendly memory access and is thus good for speed (larger than 3x)





Non-overlapped window (Swin Transformer)

sliding window (LR-Net)

# Shifted non-overlapped windows

- Enable cross-window connection
  - Non-overlapped windows will result in no connection between windows
  - Performs as effective or even slightly better than the sliding window approach, due to regularization effects



### Translational semi-invariance

• Relative position bias plays a more important role in vision than in NLP Attention $(Q, K, V) = \text{SoftMax}(QK^T/\sqrt{d} + B)V$ ,





<u>semi-invariance</u> is as effective as full-invariance in our experiments

### Architecture instantiations

 Resolution of each stage is set similar as ResNet, to facilitate application to down-stream tasks



# Application: object detection



- COCO object detection: #1 #2 #3 for single model (60.6 mAP)
  - Significantly surpass all previous CNN models (+3.5 mAP)
- COCO instance segmentation: #1 for single model (52.4 mAP)
  - Significantly surpass all previous CNN models (+3.3 mAP)

# Application: object detection

 Performs consistently better than CNN on various object detectors and various model sizes (+3~4.5 mAP)

| (a) Various frameworks                                                                                                                          |                                             |       |      |                   |                                 |                                 |               |      |        |      |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------|------|-------------------|---------------------------------|---------------------------------|---------------|------|--------|------|--------|
| Metho                                                                                                                                           | od                                          | Backb | one  | AP <sup>box</sup> | AP <sub>50</sub> <sup>box</sup> | AP <sub>75</sub> <sup>box</sup> | #pai          | ram. | FLOPs  | FPS  |        |
| Cascade                                                                                                                                         |                                             | R-5   | 0    | 46.3              | 64.3                            | 50.5                            | 82            | M    | 739G   | 18.0 |        |
| Mask R-CNN                                                                                                                                      |                                             | Swin  | -T   | 50.5              | 69.3                            | 54.9                            | 86            | M    | 745G   | 15.3 | +4.2   |
| ATSS                                                                                                                                            |                                             | R-5   | 0    | 43.5              | 61.9                            | 47.0                            | 32            | M    | 205G   | 28.3 |        |
|                                                                                                                                                 |                                             | Swin  | -T   | 47.2              | 66.5                            | 51.3                            | 36            | M    | 215G   | 22.3 | +3.7   |
| Dan Dainta V2                                                                                                                                   |                                             | R-5   | 0    | 46.5              | 64.6                            | 50.3                            | 42            | M    | 274G   | 13.6 | . 2 5  |
| Kepi olii                                                                                                                                       | 15 V Z                                      | Swin  | -T   | 50.0              | 68.5                            | 54.2                            | 45            | M    | 283G   | 12.0 | +3.5   |
| Sparse                                                                                                                                          |                                             | R-5   | 0    | 44.5              | 63.4                            | 48.2                            | 10            | 6M   | 166G   | 21.0 | . 2. 4 |
| <b>R-CNN</b>                                                                                                                                    |                                             | Swin  | -T   | 47.9              | 67.3                            | 52.3                            | 11            | ΟM   | 172G   | 18.4 | +3.4   |
| (b) <b>`</b>                                                                                                                                    | (b) Various backbones w. Cascade Mask R-CNN |       |      |                   |                                 |                                 |               |      |        |      |        |
| AP <sup>box</sup> AP <sup>box</sup> AP <sup>box</sup> AP <sup>box</sup> AP <sup>mask</sup> AP <sup>mask</sup> AP <sup>mask</sup> paramFLOPs FPS |                                             |       |      |                   |                                 |                                 |               |      |        |      |        |
| DeiT-S <sup>†</sup>                                                                                                                             | 48.0                                        | 67.2  | 51.7 | 7 41              | .4 64                           | .2 44                           | 4.3           | 80M  | 889G   | 10.4 |        |
| R50                                                                                                                                             | 46.3                                        | 64.3  | 50.5 | 5 40              | .1 61                           | .7 43                           | 3.4           | 82M  | 739G   | 18.0 | . 1 2  |
| Swin-T                                                                                                                                          | 50.5                                        | 69.3  | 54.9 | 9   43.           | .7 66                           | .6 47                           | 7.1           | 86M  | 745G   | 15.3 | +4.2   |
| X101-32                                                                                                                                         | 48.1                                        | 66.5  | 52.4 | 4 41              | .6 63                           | .9 45                           | 5.2 1         | 101M | [ 819G | 12.8 | . 2 7  |
| Swin-S                                                                                                                                          | 51.8                                        | 70.4  | 56.3 | 3 44.             | .7 67                           | .9 48                           | <b>3.5</b>  1 | 107M | I 838G | 12.0 | +3.7   |
| X101-64                                                                                                                                         | 48.3                                        | 66.4  | 52.3 | 3 41.             | .7 64                           | .0 45                           | 5.1           | 40M  | I 972G | 10.4 | 126    |
| Swin-B                                                                                                                                          | 51.9                                        | 70.9  | 56.5 | 5   45.           | .0 68                           | .4 48                           | <b>3.7</b>  1 | 145M | I 982G | 11.6 | +3.0   |

### Application: semantic segmentation

![](_page_33_Picture_1.jpeg)

- ADE20K semantic segmentation: #1 for single model (53.9 mloU)
  - The largest and most difficult semantic segmentation benchmark
    - 20,000 training images, 150 categories
  - Significantly surpass all previous CNN models (+5.5 mIoU vs. the previous best CNN model)

### Application: video recognition (coming soon)

![](_page_34_Figure_1.jpeg)

3D tokens: T'×H'×W' =  $8 \times 8 \times 8$ Window size: P×M×M =  $4 \times 4 \times 4$ 

Figure 2: Overall architecture of Video Swin Transformer (tiny version, referred to as Swin-T).

# Application: video recognition

• Swin Transformer achieves SOTA on major video benchmarks with 20x less pre-training data and 3x smaller model size

Table 1: Comparison to state-of-the-art on Kinetics-400. " $384\uparrow$ " signifies that the model uses a larger spatial resolution of  $384\times384$ . "Views" indicates # temporal clip  $\times$  # spatial crop. The magnitudes are Giga ( $10^9$ ) and Mega ( $10^6$ ) for FLOPs and Param respectively.

| Method                | Pretrain     | Top-1 | Top-5 | Views         | FLOPs | Param |
|-----------------------|--------------|-------|-------|---------------|-------|-------|
| R(2+1)D [37]          | -            | 72.0  | 90.0  | $10 \times 1$ | 75    | 61.8  |
| I3D [6]               | ImageNet-1K  | 72.1  | 90.3  | -             | 108   | 25.0  |
| NL I3D-101 [40]       | ImageNet-1K  | 77.7  | 93.3  | $10 \times 3$ | 359   | 61.8  |
| ip-CSN-152 [36]       | -            | 77.8  | 92.8  | $10 \times 3$ | 109   | 32.8  |
| CorrNet-101 [39]      | -            | 79.2  | -     | $10 \times 3$ | 224   | -     |
| SlowFast R101+NL [13] | -            | 79.8  | 93.9  | $10 \times 3$ | 234   | 59.9  |
| X3D-XXL [12]          | -            | 80.4  | 94.6  | $10 \times 3$ | 144   | 20.3  |
| MViT-B, 32×3 [10]     | -            | 80.2  | 94.4  | 1 × 5         | 170   | 36.6  |
| MViT-B, 64×3 [10]     | -            | 81.2  | 95.1  | 3 × 3         | 455   | 36.6  |
| TimeSformer-L [3]     | ImageNet-21K | 80.7  | 94.7  | $1 \times 3$  | 2380  | 121.4 |
| ViT-B-VTN [29]        | ImageNet-21K | 78.6  | 93.7  | $1 \times 1$  | 4218  | 11.04 |
| ViViT-L/16x2 [1]      | ImageNet-21K | 80.6  | 94.7  | $4 \times 3$  | 1446  | 310.8 |
| ViViT-L/16x2 320 [1]  | ImageNet-21K | 81.3  | 94.7  | $4 \times 3$  | 3992  | 310.8 |
| ip-CSN-152 [36]       | IG-65M       | 82.5  | 95.3  | $10 \times 3$ | 109   | 32.8  |
| ViViT-L/16x2 [1]      | JFT-300M     | 82.8  | 95.5  | $4 \times 3$  | 1446  | 310.8 |
| ViViT-L/16x2 320 [1]  | JFT-300M     | 83.5  | 95.5  | $4 \times 3$  | 3992  | 310.8 |
| ViViT-H/16x2 [1]      | JFT-300M     | 84.8  | 95.8  | $4 \times 3$  | 8316  | 647.5 |
| Swin-T                | ImageNet-1K  | 78.8  | 93.6  | $4 \times 3$  | 88    | 28.2  |
| Swin-S                | ImageNet-1K  | 80.6  | 94.5  | $4 \times 3$  | 166   | 49.8  |
| Swin-B                | ImageNet-1K  | 80.6  | 94.6  | $4 \times 3$  | 282   | 88.1  |
| Swin-B                | ImageNet-21K | 82.7  | 95.5  | $4 \times 3$  | 282   | 88.1  |
| Swin-L                | ImageNet-21K | 83.1  | 95.9  | $4 \times 3$  | 604   | 197.0 |
| Swin-L (384↑)         | ImageNet-21K | 84.9  | 96.6  | $10 \times 5$ | 2107  | 200.0 |

Table 2: Comparison to state-of-the-art on Kinetics-600.

| Method                | Pretrain     | Top-1 | Top-5 | Views         | FLOPs | Param |
|-----------------------|--------------|-------|-------|---------------|-------|-------|
| SlowFast R101+NL [13] | -            | 81.8  | 95.1  | $10 \times 3$ | 234   | 59.9  |
| X3D-XL [12]           | -            | 81.9  | 95.5  | $10 \times 3$ | 48    | 11.0  |
| MViT-B-24, 32×3 [9]   | -            | 83.8  | 96.3  | 5 × 1         | 236   | 52.9  |
| TimeSformer-HR [3]    | ImageNet-21K | 82.4  | 96    | 1 × 3         | 1703  | 121.4 |
| ViViT-L/16x2 320 [1]  | ImageNet-21K | 83.0  | 95.7  | 4 × 3         | 3992  | 310.8 |
| ViViT-H/16x2 [9]      | JFT-300M     | 85.8  | 96.5  | $4 \times 3$  | 8316  | 647.5 |
| Swin-B                | ImageNet-21K | 83.8  | 96.4  | $4 \times 3$  | 282   | 88.1  |
| Swin-L (384↑)         | ImageNet-21K | 85.9  | 97.1  | $4 \times 3$  | 2107  | 200.0 |

+2.9% using the same pre-training data

#### +3.6% using the same pre-training data

### Reason IV to use Transformer in computer vision

• Better connect vision and language: unified modeling

![](_page_36_Figure_2.jpeg)

### Reason V to use Transformer in computer vision

• Scalable to large model and large data

![](_page_37_Figure_2.jpeg)

- ViT G/14
  - 1000 G Flops
  - 2B parameters
  - 3B images

Scaling Vision Transformers: <u>https://arxiv.org/pdf/2106.04560.pdf</u>

# Summary: 4 years unleash the power of Transformer in CV

![](_page_38_Figure_1.jpeg)