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Relation Modeling in ConvNets

pixel-pixel relation part-part relation

Effective and Easy to use

v Parallel

v'Learnable

v'Require no relation supervision
v'Translational invariant
v'Stackable (convolution)

v' convolution v" RolPool+FC



Relation Modeling in ConvNets

pixel-pixel relation part-part relation object-object relation

v’ convolution



Well Recognized Problem

It is much easier to detect the glove
if we know there is a person.




Rarely Studied in Deep Learning Era

objects

Irregularities of objects

= At arbitrary image locations
= Of different scales

= Within different categories

= Of varying number across
different images



Rarely Studied in Deep Learning Era
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Goal: design a simple module to model
object-object relation

Effective and Easy to use
v'Parallel

v'Learnable

v'Require no relation supervision
v'Translational invariant
v'In-place, stackable




Object Relation Module

* Extension of gttention module
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Left figure credit by A. Vaswani et al.



Relation between Two Objects

appearance weight

t

[ dot product ]

t 1

projection projection
(Wg) (W)

in standard attention module
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Relation between Two Objects

* A novel geometric weight

appearance weight app. + geometric weight
T (translational/scale invariant)
dot product ] T
T T [ small network ] max{0, W; - €;(Ab)}

4d bounding box

Ab regression vector
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projection projection ‘
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in standard attention module in object relation module



Relation Aggregation

object n
four(M) appearance + geometric weight
fout
1
{relation} fout(n) = 2 w(m,n) - fip(m)
1
fin (m) fin



Multi-Branch Relation

output
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Multi-Branch Relation

branch #1
(person->glove)

branch #2
(playground->glove)

branch #N
(duplicate proposals)

output
[ concat ]
j A
[
relation relation | ... | relation
t branch #1 Tbranch #2 J branch #N

input



Object Relation Module

(L relation
+/‘ w

* residual structure
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. CVPR, 2016



Object Relation Module
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Application: Object Detection




Region-based Object Detection

e Fast/Faster R-CNN
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R. Girshick. Fast R-CNN. ICCV, 2015
S. Ren et al. Faster R-CNN. NIPS, 2015



Region-based Object Detection

e Fast/Faster R-CNN
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Region-based Object Detection

e Fast/Faster R-CNN

region proposals
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Region-based Object Detection

e Fast/Faster R-CNN

region proposals
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Our method: inserting object relation modules (ORMs)
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Learnable Duplicate Removal

learnable 4/

non-duplicate

Score score

original score




The First Fully End-to-End Object Detector

joint learnable
N\ ( \ e B ( ) e B ) l

\ ), |\ J |\ J . J \_ J '
><7‘1 XTZ

back propagation steps

CONVs
FC
¥

ORM
¥
FC
]

ORM
\

ORM




Results



Instance Recognition Experiments on COCO
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+ object relation modules

{7“1,7“2} = {1, 1} {7“1,?“2} = {4,4}

geometric weight | multi-branch | residual
e

29.6 30.3 30.5 30.9 [ 31.9 | 32.8
| IS

*Faster R-CNN with ResNet-50 model are used

faster R-CNN

WwW.0. W.0. Ww.0.

* +2.3 mAP by inserting 2 ORMs
* with +3% FLOPs



Instance Recognition Experiments on COCO
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+ object relation modules

geometric weight | multi-branch | residual {ri,r2} = {1, 1} | {r1,m2} = {4,4}

29.6 30.3 30.5 309 31.9 [ 328]
| MES—

*Faster R-CNN with ResNet-50 model are used

faster R-CNN

WwW.0. W.0. Ww.0.

e More modules: 8 ORMs



Instance Recognition Experiments on COCO
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*Faster R-CNN with ResNet-50 model are used

* Importance of relative geometric weight
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*Faster R-CNN with ResNet-50 model are used

* Importance of multi-branch relation



Instance Recognition Experiments on COCO
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+ object relation modules

{7“1,7“2} = {1, 1} {7“1,?“2} = {4,4}
31.9 32.8

faster R-CNN

W.O0. W.0. W.0.
geometric weight | multi-branch | residual
29.6 30.3 30.5 30.9

|
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*Faster R-CNN with ResNet-50 model are used

* Importance of residual connection



Duplicate Removal Experiments

fixed Trainable Part
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Duplicate Removal Experiments

fixed

method parameters | mAP mAPsp mAPr7s5
NMS Ny =03 [29.0 514 29.4
NMS Ny =04 [294 521 29.5
NMS N; =05 [29.6 519 29.7
NMS Ny =06 [29.6 509 30.1
NMS Ny =0.7 | 284 46.6 30.7
SoftNMS o=0.2 30.0 52.3 30.5
SoftNMS o=0.4 30.2 51.7 31.3
SoftNMS o=0.6 30.2 509 31.6
SoftNMS o=20.28 299 499 31.6
SoftNMS o=1.0 29.7 49.7 31.6
ours n = 0.5 30.3 519 31.5
ours n=0.75 30.1 49.0 32.7
| ours [7€0.5,09]305 | 502 324

Trainable Part

v
ORM

* Noticeably better than NMS

* Slightly better than SoftNMS
[N. Bodla et al, 2017]



Fully End-to-End Object Detection

CONVs

g

FC
FC

method | parameters | mAP mAP5o mAP7s5
NMS N, =06 |29.6 509 30.1
SoftNMS oc=20.6 30.2 509 31.6
ours n=0.5 30.3 519 31.5
ours n=0.75 |30.1 49.0 32.7
ours |n €[0.5,0.9]|30.5 502 324
ours (e2e) |n € [0.5,0.9] | 31.0 | 51.4  32.8

1
.

Trainable Part

* Benefit from fully end-to-end training



Using Stronger Backbones

backbone setting mAP mAP5g mAP7s |#. params FLOPS
2fc+SoftNMS 32.2/32.7 529/53.6 34.2/34.7| 583M  122.2B

faster RCNN | 2fc+RM+SoftNMS | 34.7/35.2 55.3/56.2 37.2/37.8| 64.3M  124.6B
2fc+RM+e2e 35.2/35.4 55.8/56.1 38.2/38.5| 64.6M  124.9B

2fc+SoftNMS 36.8/37.2 57.8/58.2 40.7/41.4| 56.4M  145.8B

FPN 2fc+RM+SoftNMS | 38.1/38.3 59.5/59.9 41.8/42.3| 624M  157.8B
2fc+RM+e2e 38.8/38.9 60.3/60.5 42.9/43.3| 62.8M  158.2B

2fc+SoftNMS 37.5/38.1 57.3/58.1 41.0/41.6| 605M  125.0B

DCN 2fc+RM+SoftNMS | 38.1/38.8 57.8/58.7 41.3/42.4| 66.5M  127.4B
2fc+RM+e2e 38.5/39.0 57.8/58.6 42.0/42.9| 66.8M 127.7B

*Faster R-CNN with ResNet-101 model are used (evaluation on minival/test-dev are reported)

* less than 10% computation overhead on all backbones

+3.0 mAP

+2.0 mAP

+1.0 mAP



What is Learnt?



Object Pairs with High Relation Weights

instance recognition duplicate removal
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Class Co-Occurrence Information is Learnt

person
bicycle

car
motorcycle
airplane

snowboard

board
tennis racket
b

otti
wine glass

r =0.90

potted plant
be

dining table
toilet

tv
aptop.

Class Co-occurrence Probability Learnt Attentional Weights



Conclusion

* A novel object relation module to model object-object relation

v'Parallel
v'Learnable 7 4
v'Require no relation supervision ==
v'Translational invariant (d—dim)(l} relation
v'Stackable i “oncat
* Application: Object Detection
v'Improves object detection accuracy {re'aﬂonj {re'aﬁon] Jsiauen
v'The first fully end-to-end object detector
(d-dim) [ —
code: Y 7Ly

https://github.com/msracver/Relation-Networks-for-Object-Detection
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