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Relation Modeling in ConvNets

Effective and Easy to use

✓Parallel

✓Learnable

✓Require no relation supervision

✓Translational invariant

✓Stackable (convolution)
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Relation Modeling in ConvNets

✓ convolution
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?

object-object relation

✓ RoIPool+FC



Well Recognized Problem

It is much easier to detect the glove
if we know there is a person.



Rarely Studied in Deep Learning Era

Irregularities of objects

▪ At arbitrary image locations

▪ Of different scales

▪ Within different categories

▪ Of varying number across 
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Goal

Input

Output

Object Relation Module

Effective and Easy to use

✓Parallel

✓Learnable

✓Require no relation supervision

✓Translational invariant

✓In-place, stackable

(d-dim)

(d-dim)

Goal: design a simple module to model 
object-object relation



Object Relation Module

word-word relation
(1D sequential)

object-object relation
(2D irregular)

• Extension of attention module

Left figure credit by A. Vaswani et al.
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Relation between Two Objects

• A novel geometric weight

projection

(𝑊𝑞)
projection

(𝑊𝑘)

dot product

appearance weight

∆𝒃

small network

app. + geometric weight

4d bounding box 
regression vector

in standard attention module in object relation module

(translational/scale invariant)

max{0,𝑊𝐺 ∙ 𝜀𝐺(∆𝒃)}



Relation Aggregation

𝑓𝑜𝑢𝑡(𝑛) =෍

𝑚

ω(𝑚, 𝑛) ∙ 𝑓𝑖𝑛(𝑚)relation

𝑓𝑜𝑢𝑡

𝑓𝑖𝑛

object n

𝑓𝑜𝑢𝑡(𝑛)

𝑓𝑖𝑛(𝑚)

appearance + geometric weight 
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Multi-Branch Relation

relation relation relation

concat

…

branch #1 branch #2 branch #N

outputbranch #1
(person->glove)

branch #2
(playground->glove)

branch #N
(duplicate proposals)

…

input



Object Relation Module

relation relation relation

concat

…

input

relation

output

output = input + relation

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. Deep Residual Learning for Image Recognition. CVPR, 2016

• residual structure



Object Relation Module

relation relation relation

concat

…

input

relation
output

Effective and Easy to use

✓Parallel

✓Learnable

✓Require no relation supervision

✓Translational invariant

✓Stackable

(d-dim)

(d-dim)



Application: Object Detection

Person: 0.98

Tennis racket: 0.91 What?

Where?



Region-based Object Detection

R. Girshick. Fast R-CNN. ICCV, 2015
S. Ren et al. Faster R-CNN. NIPS, 2015
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Region-based Object Detection

R. Girshick. Fast R-CNN. ICCV, 2015
S. Ren et al. Faster R-CNN. NIPS, 2015

• Fast/Faster R-CNN
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Region-based Object Detection

R. Girshick. Fast R-CNN. ICCV, 2015
S. Ren et al. Faster R-CNN. NIPS, 2015

• Fast/Faster R-CNN

handcraftedIndependent

F
C

F
C

Instance 

Recognition

N
M

S

Image Feature 

Generation

Duplicate 

Removal

C
O

N
V

s

region proposals

x x



Our method: inserting object relation modules (ORMs)
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handcrafted

Our method: inserting object relation modules (ORMs)
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Learnable Duplicate Removal

learnable
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learnable
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The First Fully End-to-End Object Detector
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back propagation steps



Results



Instance Recognition Experiments on COCO
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*Faster R-CNN with ResNet-50 model are used

• +2.3 mAP by inserting 2 ORMs

• with +3% FLOPs
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*Faster R-CNN with ResNet-50 model are used

• Importance of residual connection
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Duplicate Removal Experiments

• Noticeably better than NMS

• Slightly better than SoftNMS
[N. Bodla et al, 2017]



Fully End-to-End Object Detection

• Benefit from fully end-to-end training
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Using Stronger Backbones

*Faster R-CNN with ResNet-101 model are used (evaluation on minival/test-dev are reported)

+3.0 mAP

+2.0 mAP

+1.0 mAP

• less than 10% computation overhead on all backbones



What is Learnt?



Object Pairs with High Relation Weights

reference object other objects contributing high weights

instance recognition duplicate removal



Class Co-Occurrence Information is Learnt

Class Co-occurrence Probability Learnt Attentional Weights

𝑟 = 0.90



Conclusion

• A novel object relation module to model object-object relation
✓Parallel

✓Learnable

✓Require no relation supervision

✓Translational invariant

✓Stackable

• Application: Object Detection
✓Improves object detection accuracy

✓The first fully end-to-end object detector

relation relation relation

concat

…
input

relationoutput

(d-dim)

(d-dim)

https://github.com/msracver/Relation-Networks-for-Object-Detection

code:

https://github.com/msracver/Relation-Networks-for-Object-Detection

