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Abstract

Motion segmentation is an important topic in computer vision. In this paper, we study
the problem of multi-body motion segmentation under the affine camera model. We use
a mixture of subspace model to describe the multi-body motions. Then the motion seg-
mentation problem is formulated as an MAP estimation problem with model complexity
penalty. With several candidate motion models, the problem can be naturally converted
into a linear programming problem, which guarantees a global optimality. The main
advantages of our algorithm include: It needs no priori on the number of motions and
it has comparable high segmentation accuracy with the best of motion-number-known
algorithms. Experiments on benchmark data sets illustrate these points.

1 Introduction

In various computer vision problems, we often confront dynamic scenes, in which both the
camera and multiple objects move: e.g. traffic surveillance of a busy crossroad, television
relaying of a sport game, DV recording using a hand-held camera, etc. Hence, there has been
an increasing interest on the understanding and reconstructing of dynamic scenes in recent
years. As an essential issue of this area, motion segmentation problem has been studied and
many techniques have been proposed. Most of these approaches are based on the observation
that the trajectory of each rigid motion lies in a linear subspace of four dimension or less,
under the affine camera model. They can be roughly grouped into three types: factorization
based, statistical and algebraic.

Most of the early researches on motion segmentation are based on subspace factorization
or its variants [1, 3]. However, the performance of these algorithms drops quickly in the
presence of degenerate and partially dependent motions. This short coming has led to the
development of many statistical motion segmentation algorithms. Some of the algorithms
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formulate the segmentation as a clustering problem and handle it with Expectation Maxi-
mization (EM) [7, 12], which carries out by recursively estimating parameters and segmen-
tation membership. Other statistical methods use local information as a similarity metric, and
make some achievements in segmentation accuracy [2, 17]. The interesting algebraic meth-
ods reveal another direction for this problem. Generalized Principal Component Analysis
(GPCA) [15] is the best known method of this type. It receives much concern for its elegant
style and the weak restriction on the relative orientations of the motion subspaces. How-
ever, the complexity and trajectories required for the method increase dramatically when the
number and dimension of motions raise, which greatly limits the application of this method.

In this paper, we present a novel algorithm for multi-frame motion segmentation prob-
lem under the affine camera model. The algorithm is based on a mixture-of-subspace model,
which describes the multi-body motions in a unified style. Using this model, the motion
segmentation problem can be formulated as a maximum a posteriori estimation (MAPE)
problem taking account of model complexity. To solve this problem, a list of candidate
motion models is generated by a certain scheme. Then the problem is converted into a lin-
ear programming problem and therefore can be effectively solved. The main advantages of
our algorithm include: (1) the algorithm needs no priori on the number of motions; (2) since
MAP estimator incorporates prior information into the optimization problem, it is potentially
more accurate than conventional methods; (3) the linear programming formulation guaran-
tees a global optimality. Experiments on benchmark motion segmentation data sets illustrate
that as long as the true motions are contained by the candidate motion models, the proposed
method is very effective.

The rest of this paper is organized as follows: Section 2 presents the proposed method;
Section 3 shows the experimental results on benchmark real data sets. Section 4 gives con-
clusions.

2 The Proposed Method

In this section, we first review the geometry of a single motion model. Then, a mixture of
subspace model is presented for multi-body motions. After that, the motion segmentation
problem is formulated as a maximum a posteriori estimation (MAPE) problem taking ac-
count of model complexity. Finally, a linear programming technique is adopted to solve the
penalized MAPE problem with several derived candidate motion models.

2.1 A Brief Review of Single Rigid Motion Model
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where A; =K;| 0 1 0 0 + | € R¥*is an affine matrix at frame i, which
0" 1
00 0 1
depends on the camera intrinsic parameters K; and the object pose relative to the camera
(Ri7ti)'
Eq.(1) indicates that,
2 = rank(A;) < rank(W) < 4. (2)

Eq.(2) assumes that trajectories from the same rigid motion lie in a linear subspace of R?/
with dimension between two and four. Denote the dimension of the motion by r, then we
can use a set of orthonormal vectors C = {u;}/_, to completely represent a motion model.
The orthonormal vectors can be obtained from the first r left singular vectors of U by SVD
factorization [4],

W = Uz worEor«pViyp- 3)

2.2 Mixture of Subspace Model for Multibody Motions

For multi-body motion segmentation problem, the membership between trajectories and mo-
tion models is unknown, and the model parameters are also unknown. Our goal is to establish
an optimization framework with a unified cost function, for all possibilities. To this end, one
way is to construct the product of all possible motion memberships: le d(w,C;) =0 (the
motion number K is known as a priori), and then use a scheme to fit this constraint. Here,
the distance from a trajectory w to a motion model C is defined as [4],

d(w,C) = [|CLwl], )

where C; =1—Y/_, uju! is the orthogonal complement space of C in R* space. The GPCA
algorithm [15] is of this kind. When there are sufficient samples with no noise, the algorithm
can give a pretty good result. However, limited by the nonlinear form and a large quantity of
parameters, the fitting procedure can hardly be effective and accurate.

An alternative way is to define indicator variables L;;,(i = 1,...,p;j = 1,...,K), of
which L;; = 1 means the i trajectory belongs to the j” model, and L; ; = 0 otherwise.
Then a mixture of subspace model can be formulated for each trajectory w; as follows,

K
ijl L,'jd(W,‘,Cj) = O,

&)
K
s.t. E j:lLi/ = 17L,'j S {O,l},

2.3 Penalized Maximum a Posteriori Estimation (PMAPE)

If the number of motions K is known, then the maximum a posteriori estimation (MAPE)
method can be used to solve C; and L;;.

Assume the noises are of Gaussian distribution, and the standard deviation of noise on
the j"* model is o; . Given motion models {C;} — ... x and memberships L;;, the conditional
probability of a trajectory w; is,

p(wWiCj,Lij, j=1,...,K)

d*(w;,Cj) (6)
o2 )
j

=1 2w,


Citation
Citation
{Golub and Van-Loan} 1989

Citation
Citation
{Golub and Van-Loan} 1989

Citation
Citation
{Vidal, Tron, and Hartlet} 2008


4 HU: MOTION SEGMENTATION VIA PENALIZED MAPE AND LP

Given the prior probability of C; and L;;, under the independent assumption, the posteriori
probability is,
p(Cj,Lij,i=1,...,P;j=1,...K|w;,i=1,...,P)
p(W,',i = 1,...,P|Cj,L,'j,i = 1,...,P;j = 1,...,K)p(Cj,L,‘j,i= 1,...,P;j = 1,...,K)
p(wii=1,..,P) @)
_ Hzl')zl (p(W,|C],L,,,j: 1?)K)p(C]7Ll]7] = lva))
p(wi,i=1,...,P)

The prior p(w;,i = 1,...,P) is constant irrespective of the choice of C; and L;; . Thus after
some algebraic simplifications, we reach the log-MAPE cost function:

énLaﬁlnL éﬂgﬁlnp(CﬁL,j,l =1,.,Pj=1,..,K|wi,i=1,....P)

= glfggz,-:l (In(p(wi|Cj,Lij, j = 1,...,K)) +1In(p(C},Lij)))

dz(W,‘ C‘)

Dy +np(cyLy) Y

P K 1
*éﬂfﬁiﬁlﬂn(&ﬂb-/“ﬁTG,.‘”‘p(’
*énLlKZ, 12, 1 Lij

Using MAPE assumes that the number of motions K is known as a priori and motions with
different dimensions are equal. However, in practice, K is usually unknown, and the motions
with different dimensions cannot be treated as the same. One can easily reach the latter
conclusion by thinking the fact that, if several trajectories belong to a 3-dimensional model,
a 4-dimensional model will fit the trajectories well as long as the former model is contained
by the latter one.

The log-likelihood cost function certainly rises when K grows or the dimension of mo-
tions increases. Hence, a tradeoff between fitting error and model complexity should be
adopted. Several criteria can touch this purpose, e.g. Akainke information criterion (AIC)
and Bayesian information criterion (BIC) [6]. Then we can obtain the cost function as,

W,,C
)+mw»fmmq¢n>

K
S =—IL+a) Pr ©)
where Pr; indicates the complexity of the 7" model, and « is a penalizing factor. In this

work, since the two parts of the cost function are at similar scale level, & may be chosen
from 0.1 to 10. Therefore, we reach the following penalized MAPE problem:

CHLH,?rZ, 12 i Lij

st.K>1,K¢€ Z,ZFILU- = LL,»,- €{0,1},r; ={0,2,3,4}.

w,,C K
47 (wi,C;) +1n(o;) —lnp(Cj,Lij))+O‘Zj=1Prf

(10)

2.4 Linear Programming Formulation

Eq.(10) is a combinatorial optimization problem, which is NP hard. In this paper, a method
based on linear programming relaxation is adopted to solve the problem.

Revisit the cost function of Eq.(10). Suppose that somehow we have already obtained a
list of candidate motion models ®{Cj,...,Cy}, and the K true motions are contained by the
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list. Define indicating variables x; with x; = 1 if the j™ candidate motion is a true motion
and x; = 0 otherwise. Obviously we have x; = maxi<;<p{L;;}. Denote the rank of the j"
candidate motion by r;, and then the cost function of Eq.(10) can be rewritten as,

2(wi ,C)
Enil}czz Lk — 5 +In(c)) ~Inp(C;, L))

+aP(2Z{j:rj:2} Xj +3 Z{j:rj:3}xj +4Z{j:rj:4} xj)

Since we assume that the N candidate motion models have been obtained, the terms of
d*(w;,C;) , o; and prior probability p(C;,L;;) can all be pre-computed and they together
can be considered as coefficients of the variables L;;. Now the problem becomes linear to
the unknown variables L and x.

However, due to the integer constraints on L and x, Eq.(10) is still NP-hard. In order to
solve the problem, we exploit the idea of continuous relaxation, which is a popular technique
in Operational Research [5]. Applying this idea to Eq.(10), we relax the variables L and x
as:

(1)

0<L;<1,0<x;<1,Vi,j. (12)

Then the ultimate optimization problem can be written as:

. P N )
gggz:‘:l j=1 Lijd (Wi’ CJ) + aP(zZ{j:rj=2} Xj +3 Z{j:rj=3} Xj + 4Z{j:rj=4} xj)

st YN Lij=1,Vi; (13)
L;j SXj,Vi,j;
0 SLU < 1a 0 Sxij < 17Viaj?
2
where d?(w;,C;) = % +1In(0;) —Inp(Cj,L;j) is normalized distance between w; and

the C;. And the constralnt L;j < x;j is from x; = max <;<p{L;;} by certain algebraic trans-
formation.

Rounding scheme. Now we have converted the combinatorial optimization problem into a
linear programming problem. It is further hoped that the continuous variables Land Xis 0 or
1. Thus a rounding procedure should be carried out. Many schemes can be chosen for this
purpose [5]. In this paper, a simple strategy is adopted: let L;; = 1 if Zi = manzl!_'7P{I/:k.]'};
and L;; = 0 otherwise.

2.5 Candidate Motions

Generating Candidate Motions. Our scheme is as follows: Firstly, we fit 3 single local
models with rank-2, rank-3, and rank-4 respectively for each trajectory by itself and its k-
nearest neighbors, of which the distance is measured by cos-angle of two trajectories.

After that, we have obtained quantities of models, thus a model clustering scheme is
adopted to merge duplicated models together. To achieve this goal, a similarity matrix of all
generated models is computed, and then spectral clustering [9] is applied using the similarity
matrix. Since each model is a subspace, we define the similarity of two models as,

exp(—YM sin’(6)), =rg,
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where 6 < ... < O) are the principal angles [4] between two subspaces C,Cp , and M is the
minimal dimension of two subspaces. Here we set the similarity of subspaces with different
dimensions to be 0 is for the purpose of preserving low-rank motion models.

Lastly, for each cluster, we calculate the score of each model and choose the model with
the highest score. The score is computed in this way:

1) calculate the inlier set by estimating the probability density function of the distances
and discarding trajectories outside the first mode of that density. Due to lack of space,
we refer the reader to [16] for details.

2) Calculate the standard deviation of noise by the inliers as,

1

ci=——
J
Ninliers(j)

Y icintiens(jy 4 (Wi, C)).- (15)

3) Sort the models of the same cluster with ascending number of inliers and descending
standard deviation respectively.

4) Record the sort orders D; and D, , then the score is,
score = D+ D,. (16)
The number of clusters is preset, e.g. 24 or 18 in our experiments. Thus we have obtained

a list of candidate motion models. However, this scheme is not essential. Other random
sample methods such as [8, 10] can also be used here to generate motion candidates.

Noise and Prior Probability Estimation. In Eq.(16), we have obtained the standard devi-
ation of noise. The prior probability is simply set to be proportion to the number of inliers,
namely,

P(Cj7Lij) o< Ninliers(j)' (17)

2.6 PMAPE-LP Algorithm and Discussions
The proposed PMAPE-LP algorithm is listed below.

Algorithm 1. Penalized MAP Estimation and Linear Programming (PMAPE-LP)

1. Generate a list of N candidate motion models by a certain scheme. In this step, one
must ensure that the true motion models are indeed contained in the list or very similar
to one of the candidates.

2. Estimate the inlier set of each model, and calculate the standard deviation of noise and
the prior probability as:

1

Cj=——
J
Ninliers(j)

2
Zieinliers(j) d (Wi7cj)7 p(Cj7Lij> o< Ninliers(j)-

3. Compute the normalized distance,

d*(w;,Cj)
#}j +1n(o;) —Inp(Cj,Lij),

dAz(W,',Cj) =

where d(w,C) is defined by Eq.(4).
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4. Construct linear programming problem as Eq.(13), and solve it with any LP solver,
e.g. Matlab’s linprog in our experiment.

5. Round the LP solutions to binary variables, and output the groups.

Discussions.

1. In most previous works, the noises are set to be constant all over the sequence [8,
11, 12, 16]. However, it is more reasonable to think of the noises to be changeable
among the candidate motion models, for the following reasons: (1) those who assume
the noises are constant only consider the feature detector localization error. In fact,
for real applications, some other effects should also be considered, e.g. perspective
effects which are not accounted for by the affine model and act on the motion models
in different degrees. (2) The estimated candidate models certainly cannot completely
accord with the true motions, and the estimation errors of candidate motions are not
the same with each other. (3) Even if the position errors of all trajectories are constant,
the noises may still vary over the motions. Consider the motions with different ranks.
It is obviously that the models with lower rank have higher noise level for their low
degree of freedom.

2. The introducing of prior probabilities possibly improves the segmenting accuracy.

3. As long as the true motions are included in the candidate list, it is guaranteed that the
algorithm will converge to the global optimum. In addition, linear programming is
generally considered high efficient.

4. If two candidate motions are similar to each other, then the linear programming will
surely pick the better one.

3 Experimental Results

We compare our algorithm (referred to as PMAPE-LP) with the state-of-the-art affine meth-
ods on large scale real data sets. These methods include:

1. Local Subspace Affinity (LSA) [17]: this method fits a subspace around each trajectory
locally, and segments them by applying spectral clustering to an affinity matrix, which
is built from the principal angles among subspace pairs.

2. GPCA [15]: this algebraic approach models K-body motion as a polynomial of de-
gree K and fits it using a large quantity of trajectories. Then the differential of each
trajectory is calculated and applied as a similarity metric for further clustering.

3. Multi-Stage Learning (MSL) [7]: this statistical approach uses the Expectation Maxi-
mization algorithm to get the segmentation results.

Before applying LSA, we project the trajectories onto a subspace of dimension 5 or 4K,
where K is the number of motions, as suggested in [13]. We refer to the two versions as
LSA-5 and LSA-4K.

In the first experiment, we mainly verify the effectiveness of our algorithm for estimating
the number and dimensionality of a real sequence with complex motions. In the second
experiment, we mainly evaluate the segmentation accuracy of our algorithm on a large scale
benchmark data set (Hopkins 155).
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Figure 1: Multi-body motion segmentation experiment on dancing sequence: 5 motions, 268
trajectories. L: input sequence image and the ground truth of segmentation. M: Obtained
segmentation membership. R: The motion segmentation result of PMAPE-LP.

Method PMAPE-LP LSA-5 LSA-4K GPCA
Misclassification Rate 9.33 42.16 10.45 Not enough Samples !

Table 1: The misclassification rates (%) on dancing sequence.

3.1 Motion Number Estimation on Dancing Sequence

Dancing sequence [17] comes from a scene with a person dancing and has 5 motions, includ-
ing one non-rigid motion and four other articulated motions (see Figure 1L). The motions
are of rank-6, rank-3, rank-3, rank-3, and rank-3, respectively. It is a much challenging case
due to the number and complexity of motions.

Since non-rigid motions are involved in this sequence, we set the maximum rank of
motion models to be 6. In order to reduce the computational time, we projected the trajectory
data onto a 8-dimensional subspace. The initial number of models was set to be 24. The
number of trajectories used for fitting a subspace in the initial step was set to be 8, and o
was set as 0.4.

The obtained motions come from the 2,4, 5,8, 23" models in the candidate list(see Fig-
ure 1M), which are completely correct as well as the estimated dimensionality. We also
compared PMAPE-LP with the motion-number-known methods, e.g. LSA-5, LSA-4K and
GPCA on segmentation accuracy. Table 1 shows the results of misclassification rates given
by different methods. Figure 1R shows the results of motion segmentation on the first frame
of the sequence. From the results we can see that the proposed method PMAPE-LP performs
best among these methods.

3.2 Test on Hopkins 155 database

The Hopkins 155 database is a large scale benchmark real data set for the evaluation of mo-
tion segmentation algorithms [13]. The entire database is available at http://www.vision.jhu.edu,
which consists of 155 motion sequences, involving checkerboard, traffic, and other special
topics (See Figure 2 for some samples). Among these sequences, some have two motions
and others have three motions. The point trajectories are also provided in the database as
well as the ground truth, which are obtained by a tracking tool implemented in OpenCV, a
library freely available at hitp://sourceforge.net/projects/opencvlibrary.

Since most motion segmentation algorithms are designed under the assumption that the
number of motions is known as a priori, in order to compare PMAPE-LP with them in the

'GPCA requires a large number of trajectories to work. Here, the number of motions is 5, thus at least N =
[(K+2)(K+1)/2]* — 1 = 440 trajectories are required.
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e _
Figure 2: Sample images from some sequences in Hopkins 155 database. L: 2RT3RCT_B,

from checkerboard sub-set. C: kanatani2, from traffic sub-set. R: three-cars, from other
sub-set.

same condition, the PMAPE-LP method is slightly modified by adding an extra constraint to
Eq.(13):

ijvzlxj =K, (18)

where K is the number of real motions.

In this experiment, we first transformed the trajectory data onto a 5 dimensional sub-
space (as suggested in [14]). Then we generated 18 motion models for each sequence. The
penalizing factor o was set as 4 for all the sequences. Table 2 shows the average and median
classification errors on the Hopkins 155 database given by different methods.

From the results we can see: (1) for both two-body and three-body motion segmentation,
PMAPE-LP has the smallest overall misclassification rate compared to the state-of-the-art
methods. (2) The segmentation results of PMAPE-LP remain consistent when going from
one category to another, which reveals the robustness of PMAPE-LP for degenerate and
partially dependent motions. (3) Though it happens rarely, PMAPE-LP sometimes gives
large segmentation errors when the true motions are not fully contained in the candidate
models. (4) In our experiment, the penalizing factor @ was set to be constant all over the
data sets. The misclassification rates can be further reduced by selecting different as among
the sequences.

4 Conclusions and Future Works

In this paper, we present an effective algorithm for multi-frame motion segmentation prob-
lem. It is obtained by an optimization problem based on a unified mixture of subspace model.
This optimization problem is formulated as a maximum a posteriori estimation problem with
model complexity penalty, which can be further converted into a linear programming prob-
lem with several candidate motion models. Therefore it can be effectively solved. Experi-
mental results demonstrate that the proposed PMAPE-LP method can automatically estimate
the number and dimensionality of motions, as well as achieves encouraging segmentation ac-
curacy compared with the state-of-the-art methods.
Some highlights of the proposed method include:

1. Using mixture of subspace model to describe the multi-body motions makes the fol-
lowing unified formulation possible.

2. The proposed method uses penalized MAPE as the segmentation criterion. Since the
prior probabilities of the candidate models are introduced, the MAP estimator is poten-
tially more effective than the conventional maximum likelihood estimator. In addition,
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Methods PMAPE-LP LSA-5 LSA-4K GPCA MSL
Check. Averjage 3.21 8.84 2.57 6.09 4.46
Median 0.11 343 0.27 1.03 0.00
.| Average 0.33 2.15 543 1.41 2.23
Traffic .
2-body Median 0.00 1.00 1.48 0.00 0.00
motions Other Average 4.06 4.66 4.10 2.88 7.23
Median 0.00 1.28 1.22 0.00 0.00
All Average 2.20 6.73 345 4.59 4.14
Median 0.00 1.99 0.59 0.38 0.00
Check. Averége 8.34 30.37 5.80 31.95 10.38
Median 5.35 31.98 1.77 32.93 4.61
.| Average 2.34 27.02 25.07 19.83 1.80
Traffic .
3-body Median 0.19 34.01 23.79 19.55 0.00
motions Other Average 8.51 23.11 7.25 16.85 2.71
Median 8.51 23.11 7.25 16.85 2.71
All Average 7.66 29.28 9.73 28.66 8.23
Median 5.60 31.63 2.33 28.26 1.76

Table 2: The misclassification rates (%) on Hopkins 155 database.

the number of motions can be automatically estimated using model complexity penal-
izing.

3. The assumption that the noises are not the same among candidate motion models is
more reasonable than the constant noise assertion.

4. Linear programming can guarantee that the solution are the best combination from the
candidate motion models. Also it can easily incorporate other prior knowledge, e.g.
the number of motions.

Future research mainly lies in how to overcome the contradiction between good initial
candidates and low computational cost of linear programming problem. In order to raise the
possibility of true motions contained by the candidate list, we need to increase the number of
candidates, which on the other hand leads to the larger scale of linear programming problem.
Although linear programming is generally considered to be much efficient, when the scale
becomes larger, the computational cost may be intolerable and the problem may even be
impossible to be solved by ordinary computers.
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