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Multi-Class Constrained Normalized Cut with Hard,
Soft, Unary and Pairwise Priors and Its

Applications to Object Segmentation
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Abstract—Normalized cut is a powerful method for image
segmentation as well as data clustering. However, it does not
perform well in challenging segmentation problems, such as
segmenting objects in complex background. Researchers have
attempted to incorporate priors or constraints to handle such
cases. Available priors in image segmentation problem may
be hard or soft, unary or pairwise, but only hard must-link
constraints and two-class settings are well studied. The main
difficulties may lie in the following aspects: 1) nontransitive
nature of cannot-link constraints makes it hard to utilize such
constraints in multi-class settings; 2) in multi-class or pairwise
settings, the output labels have inconsistent representations with
given priors, making soft priors difficult to use. In this paper, we
propose novel algorithms which can handle both hard and soft,
both unary and pairwise priors in multi-class settings and provide
closed form and efficient solutions. We also apply the proposed
algorithms to the problem of object segmentation, producing
good results by further introducing a spatial regularity term.
Experiments show that the proposed algorithms outperform the
state-of-the-art algorithms significantly in clustering accuracy.
Other merits of the proposed algorithms are also demonstrated.

Index Terms—Constrained Spectral Clustering, Object Seg-
mentation, Unary Priors, Pairwise Priors.

I. INTRODUCTION

Image segmentation is an essential task in computer vision.
Typically, it works in a bottom-up manner by detecting con-
tours or merging pixels using brightness, color or texture cues.
However, bottom-up image segmentation algorithms often can-
not provide meaningful results because of the large semantic
gap between concept-level objects and low-level feature cues.
For example, in Fig. 1, it is hard to know that the window,
red body and white licence plate belong to a same object, car,
by exploiting only low-level cues. As a result, the best thing
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Fig. 1. An example of low level image segmentation. Left: an example image;
middle and right: bottom up segmentation results (represented by average
color of each segment) at two scales by the method in [1].

(a) (c)(b)

Fig. 2. Three types of priors used in this study to improve segmentation
performance. (a) Hard unary priors (colored circle points) from user inter-
action (top row) and our segmentation result (bottom row); (b) soft unary
priors from object detectors (car (red) and bus (blue)) [12] (top row), and
our segmentation result (bottom row); (c) soft pairwise priors obtained by
analyzing the point trajectories from an image sequence1 (top row), and our
segmentation result (bottom row).

that a low-level image segmentation algorithm can do is to
output hierarchical segments (see Fig. 1 for the results of a
state-of-the-art low-level image segmentation algorithm [1]).

To achieve meaningful image segmentation results, which
is the objective of object segmentation algorithms [2]–[4],
it is necessary to incorporate high-level knowledge into the
segmentation framework. Three types of priors in object
segmentation are illustrated in Fig. 2. Early researches usually
utilize exact unary priors, which are input by human and
indicate whether a pixel belongs to the same object or not,
to guide segmentation, also referred as interactive image
segmentation [2], [5], [6] (see Fig. 2(a)).

One can also utilize continuous or noisy unary priors. Such
priors may come from an object detector and are typically in
the form of a response image which indicates the possibilities

1To make the figure clear, we only draw trajectories of a few points in
green color.
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of an object existence [3] (see Fig. 2(b)). Different from
interactive segmentation, no manual input is needed here.

Another type of prior useful for image segmentation is
pairwise constraint which indicates whether two pixels belong
to the same segment or not, referred to as must-link and
cannot-link constraints respectively. These constraints could
be hard ones input by user interaction or soft ones contributed
by other more reliable features. Consider Fig. 2(c). When an
image sequence is available, we can obtain a set of point
trajectories using optical flow [7]. Psychophysical studies have
shown that such motion information is moderately reliable for
segmenting objects and plays a key role in helping infants
and people newly recovering from congenitally blind to get
mature vision such as segmenting and parsing the scenes [8].
Although there have been a lot of studies for trajectory-based
segmentation [4], [9], [10], their results are still not sufficiently
robust or accurate to be directly regarded as unary ground
truth seeds. Incorporating motion cues into affinity matrix
calculation [11] is also inappropriate since trajectories can not
be accurately extracted for many pixels especially in smooth
areas. Nevertheless, we could extract a sparse set of trajectories
with sufficient accuracy [7]; measure the probability of two
trajectories belonging to a same segment by comparing their
motion patterns; and use them as soft pairwise priors for image
segmentation.

In this paper, we attempt to incorporate all the above priors
into the normalized cut framework [11], [13], which is one of
the most important and popular methods for data clustering
and image segmentation. Compared with traditional clustering
algorithms such as k-means and hierarchical clustering, nor-
malized cut has mainly the following advantages: deterministic
polynomial-time solution, the ability to model arbitrary shaped
clusters, and its equivalence to certain graph partitioning,
spectral embedding and random walk problems [13]. Inspired
by the success of normalized cut, how to incorporate priors
or constraints into normalized cut has attracted more and
more attention. Based on the way they encode priors, the
existing studies can be roughly grouped into two categories.
The first category [14]–[16] directly manipulates the affinity
matrix according to given constraints, and then applies the
unconstrained normalized cut algorithm on the data points. The
second category [2], [17]–[21] models the priors as constraints
or penalties into the unconstrained normalized cut problem,
and achieves clustering by solving the new optimization prob-
lem. Since priors are directly linked to the clustering results,
the second category usually performs better than the first one.
However, none of the above methods can handle all types of
the mentioned priors well in multi-class settings because of
the following reasons.

Firstly, it is difficult to encode between-cluster or cannot-
link constraints into the multi-class normalized cut problem
due to their nontransitive property [2], [19]. As a result,
cannot-link constraints are usually either discarded [2] or
used in only two-class problem [20], [21]. Although a few
algorithms have been proposed to encode hard cannot-link
constraints in multi-class settings [14], [15], [19], [22], they
are still not well exploited.

Secondly, it is difficult to handle soft priors in multi-class or

pairwise settings due to inconsistent representations of priors
and output labels. Most of the mentioned approaches [2], [14],
[15], [19] can handle only hard priors. Although the method
of [21] successfully encodes soft priors, it can be applied in
only two-class (e.g., foreground segmentation of an image)
normalized cut problem with unary priors.

We propose novel algorithms, Multi-class Constrained Nor-
malized Cut with Unary Priors (MCNC-UP) and Multi-class
Constrained Normalized Cut with Pairwise Priors (MCNC-
PP), in order to settle the above difficulties in utilizing unary
and pairwise priors in multi-class clustering problems respec-
tively. Two key points of the proposed algorithms are: 1) priors
are encoded by a correlation function, which makes soft and
cannot-link priors tractable and also takes merits of penalizing
all points instead of isolated ones; 2) the matrix-form pairwise
priors are decomposed into columns, where each column can
be regarded as a unary prior vector for a 2-class constrained
normalized cut problem. In this way, the matrix-form priors
and vector-form labels are made consistent with each other
such that they can be modeled by correlation functions.

The proposed algorithms also have the merit of closed form
solutions. An interesting property of such solution is that
if the priors change, the optimal solution can be computed
efficiently without performing another eigen-decomposition,
which is usually computationally expensive for large-scale
data. This property is extremely useful for interactive image
segmentation.

In addition, we apply the proposed MCNC algorithms to
the problem of object segmentation by exploiting 3 types of
priors. We find that when combined with a Markov Random
Field (MRF) framework, the MCNC algorithms significantly
outperform related algorithms on challenging image datasets.

Extensive experiments on synthetic data, public clus-
tering datasets and image segmentation datasets demon-
strate the advantages of the proposed algorithms. The
codes are publicly available at https://sites.google.com/site/
hanhushomepage/projects-researches.

The remainder of this paper is organized as follows: in
Section II, we review the normalized cut problem and its
spectral relaxations; in Section III and IV, the MCNC-UP
and MCNC-PP algorithms are presented in detail; after that,
we propose a MRF framework to apply the proposed MCNC
algorithms to the problem of object segmentation by using
3 types of priors; extensive experiments on synthetic data,
public clustering datasets and image segmentation datasets
are conducted in Section VI; finally, conclusions are made
in Section VII.

II. NORMALIZED CUT

Normalized cut approach regards an image as a weighted
graph G(V,E,W ), with the vertex set V representing all n
pixels in the image and the edge set E together with the edge
weights W : V ×V → Rn×n

+ representing similarities between
pixels. The design of W is very critical for improving the
performance of image segmentation. The seminar work of Shi
and Malik [11] uses simple feature cues to construct W . A
more sophisticated measure in [1] combines several low-level
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cues to detect contours and constructs the weight matrix using
the intervening contour cue.

The task of image segmentation is to partition the pixel set
V into c segments {Ci}ci=1, with |Ci| = ni. Define the cut as,
cut(C1, C2) =

∑
i∈C1,j∈C2

Wij , and the volume as vol(C) =∑
i∈C di, with degree di =

∑
j∈V Wij . Then normalized cut

achieves segmentation by minimizing the total cut balanced
with the cluster volume [11], [13],

Jncut =
c∑

i=1

cut(Ci, Ci)

vol(Ci)
, (1)

where Ci = V \Ci. Since it is NP-hard to exactly optimize the
above normalized cut problem [11], most approaches compute
an approximate solution by spectral relaxation. The relaxations
are slightly different for two-class segmentation (c = 2) and
mutli-class segmentation (c > 2) [13], and we discuss them
respectively.

Two-class Normalized Cut. We denote the indicator vector y
as: y(i) =

√
vol(C2)
vol(C1)

, if Vi ∈ C1; y(i) = −
√

vol(C1)
vol(C2)

, if Vi ∈
C2. Denote the degree matrix as D = diag(d), and Laplacian
matrix as L = D − W . One can check that (Dy)T1 = 0,
yTDy = vol(V ), and yTLy = vol(V )Jncut. Thus the two-
class normalized cut optimization problem can be relaxed as

min
yTDy=vol(V ),Dy⊥1

yTLy. (2)

We substitute x = D1/2y and denote normalized Laplacian
matrix Lsym = D−1/2LD−1/2 with eigenvalues 0 = λ1 ≤
λ2 ≤ . . . ≤ λn and corresponding eigenvectors u1, . . . ,un.
Then eq. (2) becomes,

min
xTx=vol(V ),x⊥D1/21

xTLsymx. (3)

If V is connected, then the optimal x is given by u2, the
second eigenvector of Lsym, and the optimal y is given by
D−1/2u2.

Multi-class Normalized Cut. Denote indicator matrix Y ∈
Rn×c as: Yij = 1√

vol(Cj)
, if Vi ∈ Cj ; Yij = 0, if Vi ∈

Cj . Substitute X = D1/2Y , and then similar to two-class
normalized cut, the multi-class normalized cut optimization
can be relaxed as

min
XTX=I

tr(XTLsymX). (4)

Denote U = [u1, . . . ,uc]. Then the optimal X∗ shares a same
Stiefel manifold with U as X∗ = UR, where R ∈ Rc×c is an
orthogonal matrix. The final segmentation could be obtained
by either k-means or spectral rotation.

III. MULTI-CLASS CONSTRAINED NORMALIZED CUT
WITH UNARY PRIORS

We encode the unary priors S ∈ Rn×c by correlation con-
straints, diag((XTS)) ≥ κdiag(I). To make the correlation
functions meaningful, S should be consistent with the output

indicator matrix X in representation. To satisfy STS = I , S
is set as

Sij =

{ √
di

vol(Cp
j )
, if Vi ∈ Cp

j

0, otherwise
, (5)

where Cp
j denotes the set of priors belonging to the jth seg-

ment. Adding the correlation constraints into the optimization
framework of eq. (4), we get

min
X

tr(XTLsymX)

s.t. XTX = I, diag(XTS) ≥ κdiag(I).
(6)

However, due to non-convexity of the constraints, it is very
hard to solve the above problem. To make eq. (6) tractable, we
replace XTX = I by two constraints: diag(XTX) = diag(I)
and XTD1/21 = 0. We get

min
X

tr(XTLsymX)

s.t. diag(XTX) = diag(I), XTD1/21 = 0,
diag(XTS) ≥ κdiag(I).

(7)

Accordingly, the priors are adjusted to satisfy the two new
constraints:

Sij =



√
divol(C

p
j )

vol(Cp
j )vol(C

p)
, if Vi ∈ Cp

j

−
√

divol(C
p
j )

vol(Cp
j )vol(C

p)
, if Vi ∈ Cp

j

0, otherwise

, (8)

where Cp denotes the set of priors and Cp
j = Cp \Cp

j denotes
the pixels in Cp but not belonging to the jth segment.

Note that although the orthogonal constraints are discarded
in the new optimization, the columns of X are still comple-
mentary thanks to the complementary columns of priors S,
the correlation constraints, and the orthogonality of X to the
trivial vector D1/21.

We have the following theorem,

Theorem 1. Let G be a connected graph and let 0 ≤ κ ≤ 1 be
a correlation parameter. Then, there is an optimal solution, X∗,
to the problem of eq. (7) such that X∗ = (Lsym −αLn)

†SB,
where α ∈ (−∞, λ2(G)) is a function that depends on κ; B
is a diagonal matrix to ensure diag(XTX) = diag(I) being
satisfied; Ln = I−D1/211TD1/2; and † is the pseudo-inverse
operator.

Proof. We include the proof in Appendix. �

MCNC-UP Algorithm Since α is a function depending on κ,
we can use α instead of κ as the problem-dependent parameter.
In this case, Theorem 1 provides a closed form solution for eq.
(7), and if the spectrum of Lsym has already been computed,
one can compute the optimal solution in very little additional
effort as: X∗ =

∑n
i=2

1
λi−αuiu

T
i SB.

One can find that each column of X∗ is a weighted combi-
nation of the eigenvectors, and the weight of each eigenvector
is proportional to the correlation with the corresponding seed
column and inversely proportional to λi − α. This indicates
that the eigenvectors which are well correlated with the priors
are up weighted. Generally, λi − α grows quickly, and one
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Fig. 3. A toy example for illustrating MCNC-PP algorithm. There are four groups of data points (colored dots in (a), with similarity matrix W shown in
(b)), and we suppose the red and orange points are from the same cluster. We generate several must-link (cyan solid lines in (a) with two circles on the two
ends) and cannot-link (black dashed lines in (a)) constraints (see (c) for the prior matrix Q and (d) for merged priors Q̃). Each column of Q̃ can be viewed
as the unary constraints for a two-class clustering problem, and the corresponding optimal solution, X∗, is shown as (e). Two schemes are proposed to obtain
the final label vector from X∗: in (f), a similarity graph for data points is constructed from X∗, which is used to generate point clusters; in (g-h), a similarity
graph for priors is constructed (see (g)) and the priors are clustered into c clusters accordingly, whose centers (see (h)) are used to yield point labels.

Algorithm 1 Multi-class Constrained Normalized Cut with
Unary Priors (MCNC-UP)
Require: Graph G(V,E,W ), unary priors S, and a correla-

tion parameter α ∈ (−∞, λ2(G))
1: Compute the eigenvectors U = [u1, . . . ,uK ] of the

normalized Laplacian matrix Lsym corresponding to the K
smallest eigenvalues λ1, . . . λK , with Lsym = D−1/2(D−
W )D−1/2 and D(i, i) =

∑
j∈V Wij ,

2: compute X∗ =
∑K

i=2
1

λi−αuiu
T
i SB, where diagonal

matrix B > 0 is to ensure diag(XTX) = diag(I),
3: return label l, with lj being the index of the maximum

value in the jth row of X∗.

can get a good approximation by only reserving the first K
eigenvectors.

To the present, we have obtained X∗, which is a n × c
matrix. To generate the final labels, one can directly select the
index of the maximum value in each row as its final label.
The MCNC-UP algorithm is summarized in Algorithm 1.

IV. CONSTRAINED NORMALIZED CUT WITH PAIRWISE
PRIORS

Pairwise prior, which specifies whether two nodes belong
to the same segment or not, is a weaker but more general
constraint than the unary one. Pairwise priors could be encoded
by an n × n matrix Q, where Qij = +1 if pixels i and
j are from the same segment, namely must-link constraint;
Qij = −1 if pixels i and j are from different segments, namely

cannot-link constraint; Qij = 0 if no prior is available. In the
case of soft priors, we have |Qij | ≤ 1 with |Qij | denoting
the confidence score. We also set Q(i, i) = +1 since a node
definitely belongs to the same segment with itself.

It is obvious that unary priors could lead to pairwise
ones. But the reverse process is usually infeasible and thus
Algorithm 1 is helpless in the case of pairwise priors. In
the following, we will develop a novel algorithm to encode
pairwise priors into the normalized cut framework.

We first have a look at a toy example shown in Fig. 3.
By checking the prior matrix Q column by column, we could
observe that the jth column of Q, qj , actually provides a set of
two-class unary constraints, where the first class contains the
points which share the same class with point j and the second
class contains the points that do not belong to the same class
as point j. Thus we get

min
x

tr(xTLsymx)

s.t. ∥x∥ = 1,xTD1/21 = 0,xTqj ≥ κ.
(9)

For each column which contains pairwise constraints, we
can construct an independent optimization problem as eq. (9).
By merging all of these optimizations, we get

min
X

tr(XTLsymX)

s.t. diag(XTX) = diag(N), XTD1/21 = 0,

diag(XT Q̃) ≥ κdiag(N),

(10)

where each column q̃j of Q̃ ∈ Rn×m encodes the priors con-
tained in the jth transitive closure component [23] constructed
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Algorithm 2 Multi-class Constrained Normalized Cut with
Pairwise Priors (MCNC-PP)
Require: Graph G(V,E,W ), pairwise priors Q and a corre-

lation parameter α ∈ (−∞, λ2(G))
1: Compute the eigenvectors U = [u1, . . . ,uK ] of the

normalized Laplacian matrix Lsym corresponding to the
K smallest eigenvalues λ1, . . . , λK ,

2: if the prior Q is hard, compute the transitive closure
components from Q to construct a merged matrix Q̃;
otherwise omit this step,

3: compute X∗ =
∑K

i=2
1

λi−αuiu
T
i Q̃B,

4: use either of the following two schemes to get output
labels:

5: scheme (a): construct a new graph G̃ for V as W̃ij =
(1+X∗

i X
∗T
j /∥X∗

i ∥∥X∗
j ∥)/2, where X∗

i is the ith row of
X∗, and run normalized cut algorithm to get output labels
l,

6: scheme (b): compute similarities between priors: Aij =
(1 + x∗T

i x∗
j/∥x∗

i ∥∥x∗
j∥)/2, where x∗

i is the ith column
of X∗, and cluster the priors into c clusters. The output
labels l are set as the indexes of the maximum values for
the rows of cluster center matrix X̃∗ ∈ Rn×c.

from Q according to the transitivity of must-link constraints;
N is a cardinality matrix with N(j, j) = |q̃j |, which gives the
columns with more priors higher weights in the final decision.

Similar as Theorem 1, eq. (10) has an optimal solution as
X∗ = (Lsym − αLn)

†Q̃B, where α ∈ (−∞, λ2(G)) is a
function that depends on κ; B > 0 is a diagonal matrix
to ensure that diag(X∗TX∗) = diag(N) is satisfied; and
Ln and † have the same meaning as in Theorem 1. As a
combination of the original graph and the priors, X∗ provides
rich information to generate the output label vector. We present
two different schemes as listed in Algorithm 2. In scheme (a),
a new graph is constructed from X∗ which directly segments
the points. In scheme (b), X∗ helps clustering prior columns,
with each cluster containing priors (considering the positive
elements) from one of the segments, and the averaged X∗ for
each cluster can be regarded as a soft indicator vector for the
cluster. The time complexity of scheme (a) is O(n2m+n2K),
with O(n2m) for constructing the new graph and O(n2K) for
normalized cut. Similarly, the time complexity of scheme (b)
is O(m2n + m2K). Since in most cases, sample number n
is much larger than prior column number m, scheme (b) is
much faster than (a), and for this reason, we use scheme (b)
for motion guided image segmentation.

V. OBJECT SEGMENTATION

A. Three Types of Priors

We apply the proposed algorithms to the problem of ob-
ject segmentation by utilizing three different types of priors,
which are from interactive labeling (hard unary priors), object
detection (soft unary priors) and motion analysis (soft pairwise
priors), respectively.
Interaction Priors. Generally, only foreground objects need
labeling since the background can be determined by the

Fig. 4. Interactive segmentation with different labeled points. Top row:
interactive segmentation result with labeled points from foregrounds only;
bottom row: the ambiguity between the hair and backgrounds is cleared by
adding a few labeled background points.

Fig. 5. Trajectory based segmentation results on cars10 video in Hopkins155
datasets with 3, 10 and 20 segments respectively. This example indicates that
trajectory grouping result cannot serve as hard prior for object segmentation.

complement of foregrounds. This works well for most areas,
but fails when foregrounds have similar colors or textures
with background. For such challenging areas, we add a few
background labels to correct the errors (see Fig. 4).
Object Detection Priors. We first apply pre-specified object
detectors on the image using the method in [12]. The output
of each detector is response images of multiple resolutions.
We resize all images to the resolution of the original image,
and obtain a single image by taking the maximum value at
each pixel. The combined response image of each detector
constitutes one column of the soft priors.
Pairwise Motion Priors. We compute point trajectories using
the approach in [7]. Since the trajectories are very dense (∼
104) and short (6 frames are used), we could approximate the
motions by translational models and measure pairwise priors
based on motion differences:

Qij = exp(−2∥ui − uj∥22
σiσj

), (11)

where ui is the motion vector of the ith trajectory; ∥·∥2 is the
Euclidean distance operator; and σi is the standard deviation
of all distances associated to the ith trajectory. Q can be used
as a similarity matrix to directly cluster trajectories. However,
it often fails due to noise or tiny motion differences. For
example, considering cars10 video in Hopkins155 datasets, the
bus and background are not separated even when the cluster
number rises to 10 (see Fig. 5).

We consider Q as soft pairwise priors and use the proposed
MCNC-PP-(b) algorithm to combine the bottom up segmen-
tation results with the motion priors. There are ∼ 104 prior
columns, and it would be too time consuming if we took all
prior columns. To reduce computational time, the trajectories
are over-segmented into 20 segments and 5 trajectories are
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Fig. 6. Three columns selected from the prior matrix (the reference point
is marked as a white circle, and its associated pairwise constraints are
represented by the bright points with brightness indicating the strength) for
cars10 video in Hopkins155 datasets.

(a) (b)

(c) (d)

Fig. 7. Visualization of X̃∗. (a)-(c) 3 columns of the X̃∗ by using
Algorithm 2 on cars10 video; (d) “soft” segmentation results with channel k
corresponding to (max d)− dk , where d is calculated from X̃∗ by eq. (13).

randomly selected from each segment. See Fig. 6 for the
columns of Q (shown as grayscale images) corresponding to
three selected trajectories.

B. Object Segmentation by MCNC with Spatial Regularity

Applying the proposed MCNC algorithms on the priors, we
could output X∗ (for Algorithm 1) or X̃∗ (for Algorithm 2)
which indicates “soft” segments (see Fig. 7 for the visualiza-
tion of X∗ of an example). To achieve “hard” segmentation,
one could use k-means or the approaches listed in Algorithms
1-2. However, since these approaches approximate X∗ (or X̃∗)
by multiple constant functions, they may produce segments
with edges locating in the smooth areas, which are undesirable.

We propose to minimize an energy function that comprises
a unary cost term Ju representing the total distance between
the points and their corresponding segments and a pairwise
term Jp encoding the spatial non-smoothness:

min
π

c∑
k=1

n∑
i=1

δ(k, πi)dk(i) + γ
n∑

i=1

n∑
j∈N (i)

δ(πi, πj)d(i, j),

(12)
where π ∈ {1, . . . c} is the assignment function; δ is a Dirac
delta function; N (i) indicates the neighboring node set (4-
neighborhood is adopted); dk(i) is a unary potential function
indicating the cost of node i belonging to segment k; d(i, j)
is a pairwise potential function indicating the cost of node i
and node j belonging to a same segment; and γ is a parameter
that steers the tradeoff between the two terms Ju and Jp.

We define the unary and pairwise potential functions as (for

(a) (b) (c)

Fig. 8. Segmentation results for the image and priors in Fig. 4 by using
different objective functions. (a) segmentation results by directly using the
approach in Algorithm 1; (c) segmentation results using the MRF frame-
work but without penalty term Jl1; (d) segmentation results by minimizing
Jinteraction in eq. (21).

(a) (b)

(i)(h)(g)

(f)(d)

(c)

(e)

Fig. 9. Segmentation results obtained by using different objective functions.
(a) One frame from cars2 video of Hopkins155 dataset; (b) extracted
trajectories; (c) ground truth segments; (d) “soft” segmentation result; (e)
segmentation result by directly using scheme (b) in Algorithm 2; (f) seg-
mentation result using the MRF framework but without penalty term Jl2;
(g) segmentation result without using the weight map WM ; (h) the penalty
weight map; (i) segmentation result by minimizing Jmotion in eq. (23).

pairwise priors, X∗ is replaced by X̃∗)

dk(i) = max(X∗
i,:)−X∗

i,k, (13)

d(i, j) =
1

∥X∗
i,: −X∗

j,:∥
2η
2

, (14)

where the parameter η is used to control the penalty gap
between large and small X∗ differences. In the experiments,
we fix η = 2.

The optimization of eq. (12) can be solved by any Markov
Random Field (MRF) solver. We use the Primal-Dual solver
introduced in [24], [25] due to its high efficiency and accuracy.

For the applications which utilize priors from user inter-
action or motion analysis, the priors are much more reliable.
Thus we further add a penalty term to reinforce that the labeled
points or extracted trajectories should be assigned with correct
labels. We set the penalty factor as 104. See Fig. 8-9 for the
improvements due to this term.

For interactive segmentation, the penalty term is

Jl1 =
c∑

k=1

∑
Vi∈Cp

k

δ(k, πi). (15)
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Fig. 10. Comparison of the proposed MCNC-UP algorithm to two related algorithms: SL [14] and NCLC [2]. There are 4 groups of data points following
uniform distributions of different ranges, G1, G2, G3, G4, colored by red, blue, green and orange, respectively. Suppose G1 and G4 are from a same cluster
and we have obtained the labels for several points (shown as circle points) in each group. The spectral embedding results as well as the accuracies of all
algorithms indicate that the proposed MCNC-UP algorithm performs much better than SL and NCLC, especially when the number of labeled points is small
or outliers exist.

Synthetic Data SL [14] NCLC [2] MCNC-PP-(a) MCNC-PP-(b)
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Fig. 11. Comparison of the proposed MCNC-PP algorithms to two related algorithms: SL [14] and NCLC [2]. We use the same data points and graph as
in Fig. 10 and generate several must-link (green solid lines with two circles on the two ends) and cannot-link (black dashed lines) constraints. The spectral
embedding results as well as the accuracies of all algorithms indicate that both variants of the proposed MCNC-PP algorithm perform much better than SL
and NCLC, especially when the number of labeled points is small or outliers exist.

For motion guided object segmentation, the penalty term is

Jl2 =
c∑

k=1

∑
Vi∈Cp

δ(k, πi)d̂k(i), (16)

where d̂k(i) is computed as follows: using scheme (b) in

Algorithm 2, we get the average motion vector for the kth

prior cluster as uk; then we calculate the probability of a prior
point Vi belonging to cluster k as

Âik = exp(−2∥ui − uk∥22
σk

2 ), (17)
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Fig. 12. Comparison of MCNC-UP algorithm to the state-of-the-art algorithms (Clustering Error vs. # Labeled Points) on three datasets.

where σk denoting the standard deviation of all distances
associated with uk; finally, we compute d̂k(i) as

d̂k(i) = max(Âi:)− Âik. (18)

There may still be some errors in the areas without any
trajectory points. We further add a weight WM to the unary
term in eq. (12) as

Jwu =
∑
k=1

n∑
i=1

WMiδ(k, πi)dk(i), (19)

where WM is defined based on the distance transform DT
[26] of the prior map as

WM i = exp(− DTi
2

2DT
2 ), (20)

with DT denoting the average distance. In this way, small
unary penalty is put on the pixels with no prior points around,
and these pixels are more probably assigned with the same
labels as their neighborhoods (see Fig. 9).

The final objective functions for the three types of priors
are summarized as follows.

Interaction priors:

Jinteraction = Ju + γJp + µJl1. (21)

Object detection priors:

Jobjdet = Ju + γJp. (22)

Motion pairwise priors:

Jmotion = Jwu + γJp + µJl2. (23)

VI. EXPERIMENTS

A. Experiments on Synthetic Data

We first illustrate the proposed MCNC-UP and MCNC-PP
algorithms using synthetic data. The results of two related
algorithms, Spectral Learning (SL) [14], Normalized Cut with
Linear Constraints (NCLC) [2], are also shown.

Consider the data points in the 1st column of Fig. 10.
We construct a RBF-kernel graph with σ = 3. Suppose the
red and orange points are from a same cluster, and we have
obtained several labeled points (marked as colored circles).
For MCNC-UP algorithm, we set K = 10 and α = −λK and
draw the 3D visualizations of X∗ obtained by the proposed
MCNC-UP algorithm (see the 4th column). For the two related
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Fig. 13. Effects of α in the proposed MCNC-UP algorithm on USPS datasets.

algorithms, we draw their embedded spectrums (see the 2nd

and 3rd columns).
When the number of constraints is small (see Fig. 10(a)),

SL and NCLC algorithms fail to separate G1, G2 or G3, G4,
or merge G1, G4 while the proposed MCNC-UP algorithm
succeeds, indicating that the proposed algorithm makes a
better encoding of the priors. When the number of constraints
increases, the clustering results of NCLC and the MCNC-
UP algorithms become comparable (see Fig. 10(b)). When
there exist outliers, the proposed algorithm outperforms NCLC
algorithm significantly (see Fig. 10(c)), demonstrating the
advantage of our soft encoding over the hard one of NCLC in
handling noisy priors.

We also conduct experiments using pairwise priors. We use
the same data points and graph as in unary-prior experiments,
and randomly generate pairwise constraints for each group
pair. The embedded spectrums of all algorithms with varying
constraint numbers are shown in Fig. 11. We can see that
both the two variants of MCNC-PP algorithm work well in all
cases, while SL fails in all cases and NCLC algorithm fails
when the number of constraints is small or outliers exist.

The performance of the method in [19] is not included in
these figures since its results are difficult to visualize. We will
do comparisons with it using real data in the next section.

B. Quantitative Evaluation on Public Datasets

In this section, we compare the proposed algorithms to the
state-of-the-art algorithms: Spectral Learning (SL) [14], NCLC
[2], and Constrained Clustering with Spectral Regularization
(CCSR) [19] on real data. All the algorithms can handle
pairwise priors, and thus can also utilize unary priors (pairwise
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Fig. 14. Comparison of the proposed MCNC-PP algorithm to the state-of-the-art algorithms with pairwise priors (Clustering Error vs. # Pairwise Constraints)
on three datasets.

TABLE I
COMPUTATIONAL TIMES FOR STATLOG (SEGMENTATION) DATASET ON A COMPUTER WITH 2.4GHZ CPU USING MATLAB 2010A.

Computational Times for Unary Priors (s) Computational Times for Pairwise Priors (s)
# constraints NCLC SL CCSR MCNC-UP NCLC SL CCSR MCNC-PP (a) MCNC-PP (b)

7 (28) 3.1 0.7 39.7 0.04 2.3 0.8 37.6 0.8 0.2
28 (112) 3.2 0.7 43.9 0.05 2.5 0.9 38.9 1.6 0.5

224 (896) 19.1 0.8 55.0 0.06 4.5 0.9 40.5 4.7 2.8

priors can be deduced from unary ones). The results of
Normalized Cut (NC) [11] are also shown for reference.

We use three public datasets, Statlog (Segmentation), USPS
and Extended Yale Face B, for quantitative evaluation. Statlog
(Segmentation) [27] is an image segmentation dataset with
2086 non-redundant pixels from 7 outdoor images. A feature
with 19 elements is extracted for each pixel and the task is to
cluster pixels into 7 classes: brickface, sky, foliage, cement,
window, path and grass. USPS2 is a handwritten digits dataset
with 9298 images. For this dataset, an image is represented
by a 256-D feature vector formed by concatenating all the
columns of the image intensities and the task is to cluster the
images into 10 classes (i.e., 10 digits). Extended Yale Face
B dataset [28] contains 16128 images of 28 human subjects
under 9 poses and 64 illumination conditions. We resize the
images with 30 × 40 pixels, and choose the last 10 subjects
(5760 images) for experiments. The goal is to cluster the face
images into 10 human subjects.

To make fair comparisons, we use the same graphs for all
algorithms. For Statlog (Segmentation) and USPS datasets, We
use the weighted k-nearest-neighbor RBF-kernel graph with
k = 20 and σ determined following the self-tuning algorithm
[29]. For Extended Yale Face B dataset, we use a low-rank
subspace kernel [30] to construct the graph:

Wij = (
VDiV

T
Dj

∥VDi∥∥VDj∥
)2, (24)

where V is from SVD factorization of the original data matrix
M = UΣV T , and VDi is the ith row of VD, the first d columns
of V (we set d = 20 in the experiments). For the proposed
MCNC-UP and MCNC-PP algorithms, we fix the parameters
in all experiments as: K = 20, α = −λK . For all the other
algorithms, we use the settings advised by the authors.

For each dataset, several different numbers of labeled points
or pairwise constraints are randomly generated using ground

2http://www-i6.informatik.rwth-aachen.de/˜keysers/usps.html
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Fig. 15. Effects of α in the proposed MCNC-PP algorithm on the USPS
dataset.
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dataset.

truth labels. For a fixed number of constraints, we report the
results averaged over 10 trials.

We use clustering error (ERR) as the evaluation metric.
Denote qi as the clustering label of xi obtained by the
clustering algorithm and pi as the ground truth label of xi.
ERR is defined as:

ERR = 1− 1

n

n∑
i=1

δ(pi,map(qi)), (25)

where n is the number of samples, δ(x, y) = 1 if x = y;
δ(x, y) = 0 otherwise, and map(qi) is the best mapping
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Fig. 17. Interactive image segmentation. From left to right: original image and labeled points, bottom up segmentation at two scales, segmentation results
of NCLC [2], segmentation results of CCSR [19], our “soft” segmentation results, and our segmentation results.

Fig. 18. Constrained image segmentation using object detection priors. From left to right: original image, bottom up segmentation at two scales, soft priors
from object detectors, our “soft” segmentation results, and our segmentation results.

function that permutes clustering labels to match the ground
truth labels using the Kuhn-Munkres algorithm.
Accuracies with Unary Priors. Fig. 12 shows Clustering
Error vs. # Labeled Points on the three datasets for all
algorithms. We can see that the proposed MCNC-UP performs
much better than all the other algorithms. We also evaluate
the effects of α3 (see Fig. 13). We can find that when the
number of labeled points is small, a larger α yields better
results; while when there are a large number of labeled points,
a smaller α is better. Since α balances the original normalized
cut objective and the correlation penalty, when more labeled

3Parameter Tuning is drawn by tuning α using a set
linspace(−λK/4,−λK , 4)

∪
linspace(−λK ,−4λK , 4).

points are available, higher confidence should be given to
the correlation penalty. This observation provides a guiding
principle for parameter selection.
Accuracies with Pairwise Priors. Fig. 14 shows Clustering
Error vs. # Pairwise Constraints on the three datasets for
all algorithms. We can see that the proposed MCNC-PP also
performs much better than all the other algorithms. In Fig. 15,
we draw the effects of α which also advocates that a smaller α
would generate better results when the number of constraints is
small. We also compare two schemes of MCNC-PP algorithm
(see Fig. 16). We can see that their accuracies are similar
especially when the number of constraints is large.

Computational Times. The computational times with varying
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Fig. 19. Constrained image segmentation using motion relations. From left to right: original image, bottom up segmentation at two scales, trajectory points,
ground-truth segments, our “soft” segmentation results, and our segmentation results.

number of constraints for Statlog (Segmentation) dataset are
shown in Table I. For CCSR and the proposed algorithms, we
suppose the first K eigenvectors has been computed (about 1
second using our computer). We can see from Table I that our
algorithms are faster than most of the other ones, especially in
the case of unary priors. We also compare two variants of the
MCNC-PP algorithm and find that scheme (b) is much faster.

C. Experiments on Object Segmentation

We conduct experiments on object segmentation by utilizing
three different types of priors as presented in Section V.
We use the images from PASCAL VOC datasets [31] and
Hopkins155 video datasets [32]. For all images, the method of
[1] is used to construct the weighted graph and K = 31 eigen-
vectors are pre-computed. We set α = −λK , 0, − 5λK for
interactive segmentation (reliable priors but in small amount),
object detection guided segmentation (less reliable priors)
and motion guided segmentation (reliable and dense priors),
respectively, according to the reliability and amount of priors.
We set γ = 10−3

n2
√
n

for all the three applications. Since previous
algorithms either cannot handle soft priors or support only
two-class problems, they are only tested in interaction cases.
Interactive Segmentation. Fig. 17 shows several examples
of interactive segmentation. We can see that the proposed
method works very well in all examples, while the two related
methods fail. In addition, the segmentation takes only 0.4
seconds for most interactions4, with about 0.3 seconds to get
soft segments and about 0.1 seconds to update the segments,
which is sufficiently fast for real-time interaction. Note that the
eigenvectors in bottom up segmentation can be precomputed
and an initial segmentation is obtained in the first interaction.
Segmentation using Object Detection Priors. Several exam-
ples are shown in Fig. 18. The proposed method can separate

4Since the eigenvector computation is only related to the image itself and
can be pre-computed off-line, we do not include such time.

the foregrounds from backgrounds, although some errors exist
in border areas where few priors are present.
Segmentation using Pairwise Motion Relations. Some ex-
amples can be found in Fig. 19. The segmentation results are
very close to the ground truths, demonstrating the effectiveness
of our method.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed novel algorithms for con-
strained normalized cut problem, which handle both hard and
soft, both unary and pairwise priors in multi-class settings. We
also applied the proposed algorithms to object segmentation
problem by utilizing priors from human interaction, object
detection, and trajectory-based motion analysis.

The major difficulties for utilizing various priors in con-
strained normalized cut problem lie in two aspects: non-
transitive nature of cannot-link constraints and inconsistent
representations between given priors and output labels. We
settled the difficulties in two novel ways: 1) we incorporated
priors into the normalized cut problem using a correlation
function. Compared with most previous methods which are
limited to hard constraints and impose penalties only on
points with constraints, the correlation function makes soft and
cannot-link priors tractable, and have the merit of penalizing
all points instead of isolated ones; 2) we handled pairwise
priors by decomposing the problem into several 2-class unary-
prior-based constrained normalized cut subproblems. In this
way, the matrix-form priors and vector-form labels are made
consistent with each other such that they can be modeled by
correlation functions.

We provided closed form solutions for the proposed op-
timizations and showed that fast computations are achievable
for interactive applications. We also applied the proposed algo-
rithms to object segmentation problem by further introducing a
spatial regularity term. Extensive experiments were conducted
on synthetic data, real image data and object segmentation
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datasets, proving that the proposed algorithms outperform the
state-of-the-art ones significantly in accuracy and also are
much faster in most cases.

Our future works will mainly focus on generating more
powerful priors to achieve object segmentation. For example,
in object detection guided segmentation applications, presently
we generate priors directly from responses of sliding window
based object detectors, which cover only the center areas of
objects. In the future, we will attempt to generate better priors
by utilizing more sophisticated object models that contain
exact region information [3], [33], [34].

APPENDIX A
PROOF OF THEOREM 1

We first rewrite the constraints in eq. (7) as,

diag(XTX) = diag(I) ⇒ tr(XTX − I) = 0, (26)

XTD1/21 = 0 ⇔ tr(XTD1/211TD1/2X) = 0, (27)

diag(XTS) ≥ κdiag(I)
⇔ ∀ diagonal B ≥ 0, tr(XTSB) ≥ κtr(B).

(28)

From eq. (26-27), we get

tr(XT (I −D1/211TD1/2)X − I) = 0. (29)

Denote Ln = I −D1/211TD1/2. Replacing the constraints
in eq. (7) by eq. (28-29), we get

min
X

tr(XTLsymX)

s.t. tr(XTLnX − I) = 0, tr(XTSB) ≥ κtr(B).
(30)

Using Schur Complement [35], we get the dual problem of
eq. (30) as

max
α,β,Λ

tr(Λ)

s.t. β ≥ 0,Λ diagonal,[
Lsym − αLn −βSB

−β(SB)
T

αI + βκB − Λ

]
≽ 0.

(31)

Eq. (31) is a semidefinite programming (SDP) problem, and
its dual is

min
X,Z

tr(LsymZ)

s.t. tr(XTSB) ≥ κtr(B),

tr(LnZ − I) = 0,

[
Z X
XT I

]
≽ 0.

(32)

For the above equations, we have two propositions as A.1
and A.2. Then the optimal points of eq. (30), X∗, and the
corresponding optimal dual points (α∗, β∗) must satisfy the
Karush-Kuhn-Tucker conditions [35],

LsymX
∗ − α∗LnX

∗ − β∗SB = 0,
tr(X∗TLnX

∗ − I) = 0, tr(X∗TSB − κB) ≥ 0,
Lsym − α∗Ln ≽ 0, β∗ ≥ 0,
α∗tr(X∗TLnX

∗ − I) = 0, β∗tr(X∗TSB − κB) = 0.
(33)

Together with the original constraint XTD1/21 = 0 in eq.
(7), X∗ is given by X∗ = β(Lsym − αLn)

†SB, where α ≤
λ2, β > 0 and B are the optimal solutions of the dual problem
eq. (31). Since in eq. (31), βB can be determined by α through

constraint diag(XTX − I) = 0 (the left part of eq. (26)) and
the facilitate variable Λ (just used to rewrite the original dual
problem as a standard SDP problem) could be eliminated, α
can be regarded as a function of κ. �
Proposition A.1. Strong duality holds between SDPs (31) and
(32) for 0 < κ < 1.

Proof. SDP (32) is strictly feasible when 0 < κ < 1 (consider
X̂ = S. We have tr(X̂TSB) = tr(B) > κtr(B), and
there certainly exists Ẑ satisfying all the equality and strict
inequality constraints). According to Slater’s condition [35],
strong duality holds between SDPs (31) and (32). �
Proposition A.2. Strong duality holds between eq. (30) and
SDP (31).

Proof. Eq. (30) is equivalent to

min
X,Z

tr(LsymZ)

s.t. tr(LnZ − I) = 0, tr(XTSB) ≥ κtr(B), Z = XXT .
(34)

We can find that SDP (32) is a relaxation of eq. (34), and it is
obvious that the optimal value of eq. (32) is less than or equal
to the optimal value of eq. (34). Together with Proposition
A.1, we conclude that strong duality between eq. (30) and
SDP (31) also holds. �
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