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ABSTRACT

Recent years, image-based crack detection has attracted more and
more attentions for its potential applications on the inspection, diag-
nosis, and maintenance of various products, e.g. metal workpiece,
concrete structure, asphalt road and etc. Generally, the applications
are inevitably confronted with noises such as non-uniform illumi-
nated conditions, shadings, stains and nature textures. To ease the
problem, traditional methods usually focused on a special applica-
tion and are carried out with strictly controlled image acquisition
environments or an adhoc preprocessing procedure. In this paper,
we propose a general crack detection method which can deal with
various products as well as the noises in a unified fashion, and even
with the same parameters. The method partitions an image into
overlapped small grid cells and determines whether the cells con-
tain cracks using a well designed feature descriptor. Experiments
using real images of various products show the effectiveness of the
proposed feature as well as the method.

Index Terms— crack detection, grid cell, Hough transform,
Support Vector Machine

1. INTRODUCTION

For many architectural and manufacturing products, it is a very im-
portant task to inspect the surfaces and repair the damages or degra-
dations. Traditionally, this task is done by skilled human beings.
For example, the road menders are spending months of time to find
and repair the degradations in asphalt pavements. However, if we
can automatically inspect the surfaces by captured images, then a
road mender just needs to drive a survey lorry with camera under-
neath, and the machine can automatically inspect the road surfaces
and stop to seal the damaged area if needed, which saves a lot of
manual work and time cost.

Among the various defects, crack is one of the most common
and fundamental type. In the last decade, several methods for au-
tomatic crack detection have been proposed. These methods can be
roughly grouped into two categories: global based and local grid
based. Global based methods search the crack points over the whole
image by using anisotropy measures [1], frequency spectrum [2], ef-
ficient preprocessing [3] or percolation model [4, 5]. Because these
methods usually need to inspect all pixels and trace them in the
neighborhoods, they are much time-consuming. Another drawback
is revealed by their strong assumptions on the images, i.e. with few
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noises [1, 2], uniform illuminations [1, 4, 5], vertical or horizontal
cracks[1], relative brighter background [3, 4, 5] and etc.

Other methods consider to partition the image into small grid
cells, and find the potential crack cells [6, 7]. These methods limit
the searching space to those crack cell candidates and so they save a
lot of time. Our work also follows this manner. We design a novel
feature which well describes the characteristics of cracks and is in-
variant to rotation and illumination, and use a Support Vector Ma-
chine (SVM) classifier [8] to judge whether a cell is a crack. In this
way, we can ease the problems of noises, non-uniform illuminations,
and empirical parameter tuning. In the experiments on 50 real im-
ages of various products, we compare the proposed feature with the
features used in [6, 7] and other popular features [9, 10, 11] used for
texture classification or object detection. The results show that the
proposed feature performs much better than the others.

2. THE PROPOSED METHOD

2.1. Method Overview

The flowchart of the proposed approach is shown in Fig.1. We first
train a linear SVM classifier which determines whether a cell is a
crack or not. This procedure can be done off-line and the trained
classifier is saved in the storage or memory. Then we start the on-
line crack detection procedure. We partition the image into 20× 20
pixel grid cells and extract a feature vector for each cell. Then we
determine whether the cell is a crack or not by inputting its feature
into the trained SVM classifier. Since we detect cracks on local cells,
we can do the detection at the same time as the acquisition of the
surface images.

Different from [7], in our method, the cells are overlapped. That
is because there may be ambiguities between a cell with crack on its
border and a cell on the joint area of different background types (See
Fig.3). Therefore, to avoid wrongly detecting the multi-background
cells as cracks, we have to also reject the border-crack cells. Thus
using nonoverlapped cells as in [7], those crack areas are missing.
However, using overlapped cells, such cracks can be identified by
examining the overlapped adjacent cells (see the blue cell in Fig.3).

2.2. Hough Transform Based Feature (HTF)

The most key issue of the method is feature. The feature should
be able to describe the physical characteristics of cracks. Carefully
examining the defects, we can find that the pixels of a crack in a
block have three significant properties: 1) they have much different
gray scale compared with the pixels of good area; 2) they together
approximately locate on a line; 3) the gray scale changes around
the two sides of cracks are approximately symmetric. To describe
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Fig. 1. Flowchart of the proposed approach.

Fig. 2. Sketch map for HTF calculation. All the gradients and Hough
matrices are normalized for visualization that the maximum value is
255. The red points in the Hough matrices represent the biggest
value of each column, and the brightness indicates the relative mag-
nitude. For the selected cell in this figure, we use the vertical gradi-
ents to form the HTF vector.

these physical characteristics, we design a novel feature based on
Hough transform, referred as HTF. Fig.2 shows the sketch map for
HTF construction. For each cell, we first calculate the multi-channel
gradient responses. Then, we calculate the soft Hough matrix for
each channel. And finally, we form the feature vector by extracting
meaningful properties from the Hough matrices.

2.2.1. Multi-channel Gradient Responses

Since the method is designed generally for various products, the
crack area can be either black, white, or in-between, and so is the
regular area. Therefore, directly using original gray scale images,
we can hardly deal with them in a unified fashion. Nevertheless, we
can solve it by using the nonnegative gradient versions of the original
image, which are invariant to the absolute gray scale.

The usual practice is to obtain the amplitude gradient response.
However, this may lose some key information. For example, as
shown in Fig.3, the third cell contains a black crack, while the sec-
ond one is on the joint of non-uniform backgrounds. Using ampli-

Fig. 3. Several kinds of cells. In the figure, they are boundary-crack
cell, joint-backgrounds cell and crack cell. (a) is an image of real
chapped asphalt road marked with the selected red grid cells on it;
(b) are the zoomed grid cells; (c) is the amplitude gradient response;
(d) are the 4-channel gradient responses, and from up-left to down-
right, they are “x+”,“x-”,“y+” and “y-”, respectively.

tude gradient responses (see Fig.3(c)), they are similar in shape. To
avoid this problem, instead of using amplitude gradient response,
we calculate 4-channel edge responses, referred as “x+”, “x-”, “y+”,
and “y-”, respectively. “x” represents the gradients of horizontal
direction, and “y” represents the gradients of vertical direction. “+”
and “-” represent the gradient responses only preserving positive and
negative elements, respectively. We calculate the 4 channels by us-
ing corresponding masks and only maintaining the positive values
(see Fig.4). See Fig.3(d), the crack cell has large responses on both
“+”, “-” channels, while the multi-background cell only has large
responses on one of “+” or “-”. So we can tell them apart.

2.2.2. Soft Hough Transform

The pixels of cracks in a cell together approximately locate on a line.
However, it is hard to directly extract numeric values from original
cells to describe these properties. To overcome this difficulty, we
adopt the Hough transform, which is a popular technique to iden-
tify positions of arbitrary shapes in an image [12]. Here, we use the
Hough transform mainly for obtaining the position-angle informa-
tion of an original cell as,

r = x cos θ + y sin θ, (1)

where (x, y) is the coordinates of a white pixel, and (r, θ) is the
corresponding position-angle parameter curve. In tradition, Hough
transform is asserted on the binary image. Here we attempt to extend
it to the real gradients image by using the numeric values as weights,
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Fig. 4. The 3 × 3 masks for the 4-channel gradient responses and
only the non-negative responses are remained. From the left to right,
they are “x+”, “x-”,“y+” and “y-”.

referred as soft Hough Transform. We can then extract several mean-
ingful numeric properties from the four Hough matrices H{x,y}± to
form HTF feature.

2.2.3. Feature Calculation

In our default settings, the (r, θ) parameter space is divided into
15× 24 bins. Notice that the summation of bins for each θ are con-
stant. So for each θ, we use the maximal bin value to the constant
summation as the measure of r concentricity on the angle. The crack
is also highly concentrated in θ domain, which means that only a few
θs have high r concentricity. To be rotation invariant, we sort the r
concentricity measures, and form a 24-elements vector v for a H .
The descent velocity of v can be a measure of the θ concentricity.

The crack may trace along arbitrary angles. Nevertheless, it
must have significant gradient responses in at least one direction of
“x” and “y”. And we use the one with the larger r and θ concentricity
as the main direction to calculate HTF, which is measured by,

max(v+) ·
∑

i

((v+(i+ 1)− v+(i)) · αi)

+max(v−) ·
∑

i

((v−(i+ 1)− v−(i)) · αi),
(2)

where v+,v− are the r concentricity measure vectors for all θs of
“+” and “-” Hough matrices, and α is an empirically chosen atten-
uation factor (in our implementation, we set it as 0.9). Hough ma-
trices in either “x” or “y” direction, max(v±) indicates the largest
r concentricity, and (v±(i+ 1)− v±(i)) · αi measures the θ con-
centricity. In the following, we only use the Hough matrices of the
main direction for calculation. And for convenience we do not mark
the variables with their direction (“x” or “y”).

We calculate the following formulas as the elements of HTF:

1. the summation of H±’s column, which measures the total
strength of gradient responses;

2. the largest r concentricity

max(v+) + max(v−); (3)

3. the angle concentricity (i = 1, · · · , 23)
(v+(i+ 1)− v+(i))

max(v+)
+

(v−(i+ 1)− v−(i))
max(v−)

; (4)

4. the difference measures of “+” and “-” responses

||v+ − v−||1
||v+ + v−||1 , (5)

||v0
+ − v0

−||1
||v0

+ + v0
−||1

, (6)

min fr(G+, G−), (7)

where || · || is is the �1 norm operator; v0
± are the original

vectors of v± before sorting; G± are the “+” and “-” chan-
nel gradient responses of the original cell. fr(G+, G−) rep-
resents the correlation function of G+ and G−. Eq.(5) and
Eq.(6) indicate the overall difference of the “+” and “-” chan-
nels’ r concentricity at all the θs. Eq.(7) measures the incon-
sistency of shifts between the “+” and “-” gradient responses.
Generally, the shifts of the “+” and “-” gradient responses
are consistent, which means that choosing a suitable shift, a
crack cell has a high correlation between G+ and G−. And
for non-crack cells, the shifts are usually inconsistent.

3. EXPERIMENTAL RESULTS

We now verify the accuracy of the proposed method. In the experi-
ments, we use 50 real images of various products for the test, includ-
ing metal workpieces, concrete structures, asphalt road surface and
etc (see Fig.5). It is a challenging task as the images are with var-
ious resolutions, illuminated conditions and textures and we should
handle them with the same parameters. To verify the effectiveness
of the proposed HTF feature, we compare it with other five features:

1. Cell Templates (CT) [6]: it uses Principal Component Analy-
sis (PCA) to calculate several orthonormal cell templates, and
the reconstruction coefficients form the feature vector.

2. Border Gray Scale Chain (BGC) [7]: The feature is based on
the observation that a crack should go through the border two
times. It uses the brightness profiles of border pixels as the
feature vector. To be rotational invariant, the first element is
set to be the brightness of the darkest pixel.

3. Moment Feature (MF) [9]: it uses several lower order central
moments as the feature.

4. Histogram of Oriented Gradients (HOG) [10]: it calculates
the cell’s histogram of oriented gradients as the feature. In
the experiment, we use 2 × 2 “cell”s (Notice that the “cell”
here is a parameter of HOG in [10]) for a block and 5 × 5
pixels for a “cell”.

5. Local Binary Patterns (LBP) [11]: it is defined as a gray-scale
invariant texture measure, derived from a general definition of
texture in a local neighborhood.

We partition the images into overlapped 20× 20 pixel grid cells
and label them as crack or non-crack. Then we randomly select
1000 crack and 1000 non-crack cells to train a SVM classifier, and
the remaining ones for testing. The features are evaluated by the
receiver operating characteristic (ROC) analysis [13] (TPR versus
FPR), where TPR (True Positive Rate) means the proportion of
crack cells that are correctly identified, and FPR (False Positive
Rate) means the proportion of non-crack cells that are incorrectly
identified as crack ones. We obtain the operating points on the ROC
curve by shifting the decision hyperplane of the SVM classifier.

We conduct 20 trails of training and testing sets segmentation
for each feature, and we use the average (FPR, TPR) point at each
shifting parameter to form the ROC curve. Fig.6 shows the ROC
curves by using various features. The closer to the upper left corner
the curve is, the better the performance is. So we can see that the
proposed HTF performs much better than other features. Noticing
that for crack detection, there exist ambiguities when judging a cell
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Fig. 5. Crack detection results using HTF.
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Fig. 6. ROC curves using various features.

as a crack or not. In our experiments, only if a cell locates on long
cracks, we label it as a crack. However, many cells with line textures
or tiny blemish may also look like a crack when we only focus on the
very cell, which contributes to a large portion of classification errors.
So the ROC performances of the proposed HTF feature is wonderful
and much convincing.

Fig.5 shows the crack detection results of some typical images
in a test. The cells marked by red rectangles are the detected crack
ones. Fig.5(a) is a metal workpiece, with a relative brighter crack.
Fig.5(b) and (c) are asphalt road surfaces, while (b) with irregular
textures, and (c) with non-uniform backgrounds due to disabled seal-
ing material. Fig.5(d) is an evaluation image used in [3]. The image
captures a concrete structure with complex illuminated conditions.
We can see that all these images are well handled by the proposed
HTF feature.

4. CONCLUSIONS

We have presented a local grid based method for general crack detec-
tion based on a novel feature, HTF. Based on several observations,
we designed a novel feature HTF using 4-channel gradient responses
and Hough Transform. We showed that the proposed HTF feature is
invariant to rotation and illumination. And so it can deal with various
products as well as the noises in a unified fashion and even with the
same parameters. Experiments on real surface images of different
products demonstrate the effectiveness of the proposed HTF feature
and the crack detection method.
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