Disentangled Self-Attention Models

Han Hu (胡瀚)

Visual Computing Group

Microsoft Research Asia (MSRA)

September 8th, 2020

On behalf of authors: Minghao Yin*, Zhuliang Yao*, Yue Cao, Xiu Li, Zheng Zhang, Steve Lin and Han Hu

Outline

- A Brief Introduction of Self-Attention Models
- The Degeneration Problem and Diagnosis
- Approach and Results

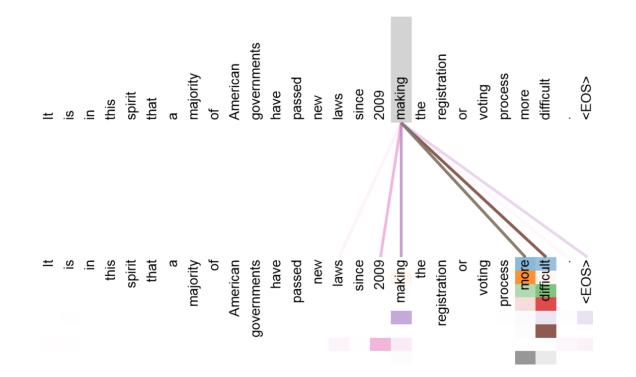
Outline

• A Brief Introduction of Self-Attention Models

- The Degeneration Problem and Diagnosis
- Approach and Results

Self-Attention Models Dominate the NLP Field

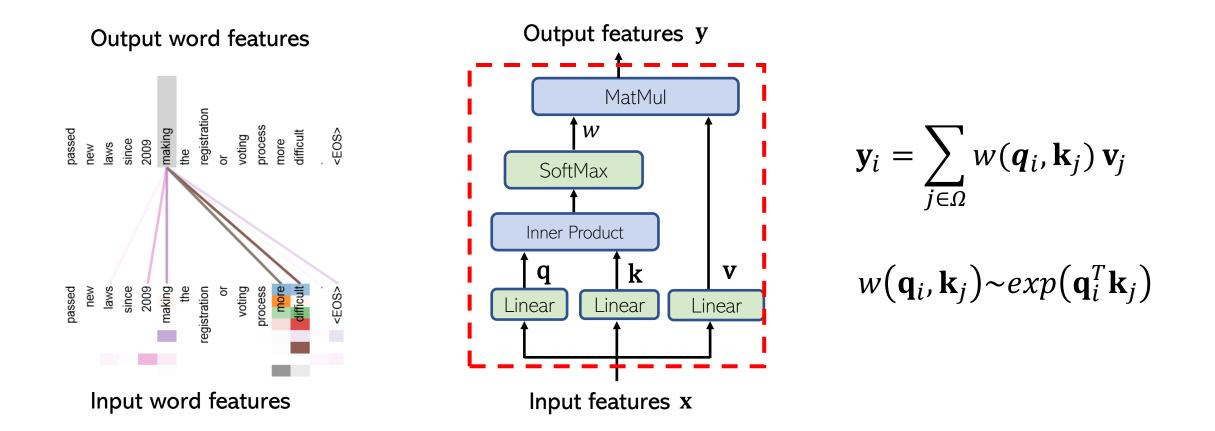
- Transformer (Google)
- GPT (Open AI)
- BERT (Google)
- MASS, UniLM, VL-BERT (MSRA)



Ashish Vaswani et al, Attention is all you need, NeurIPS'2017

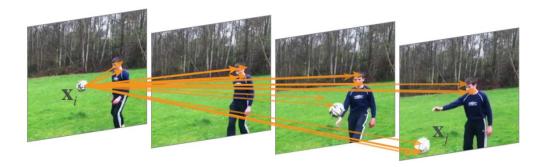
What is a Self-Attention Module?

- Transforms the word/token input feature by encoding its relationship with other words/tokens
- A weighted average of Value, where the weight is the normalized inner product of Query and Key



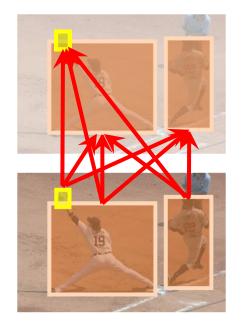
Two Pioneer Works in Vision

Non-Local Neural Networks [CVPR'2018]



- ✓ Inserted in backbone networks to complement convolution
- ✓ Improves various applications: object detection, semantic segmentation, action recognition and etc

Relation Networks [CVPR'2018]



- ✓ Models Object-to-Object Relationship
- ✓ The first fully end-toend object detector

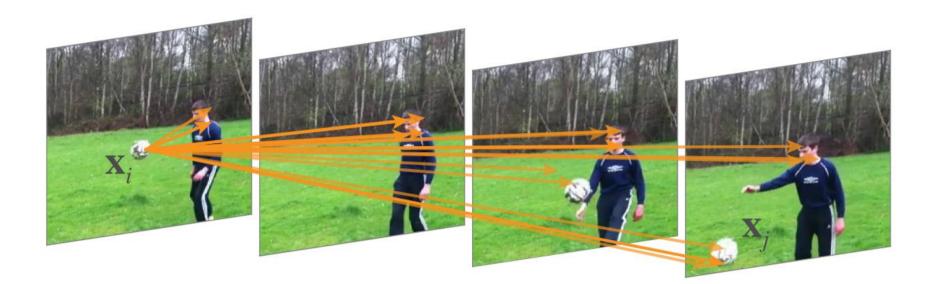
Summary of Representative Works

- Pixel-to-Pixel Relationship
 - Non-Local Neural Networks [CVPR'2018]
 - Local Relation Networks [ICCV'2019]
 - Standard-Alone Self-Attention Models [NeurIPS'2019]
- Object-to-Pixel Relationship
 - Learning Region Features [ECCV'2018]
 - End-to-End Object Detector (DETR) [ECCV'2020]
- Object-to-Object Relationship
 - Relation Networks [CVPR'2019]
 - Various Video Applications
 - Video Action Recognition, Multi-Object Tracking, Video Object Detection

Outline

- A Brief Introduction of Self-Attention Models
- The Degeneration Problem and Diagnosis
- Approach and Results

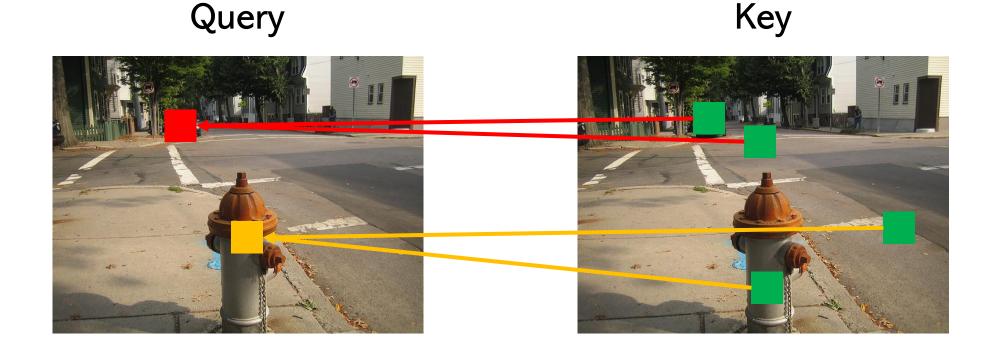
Self-Attention Encodes Pairwise Relationship



Does it learn pairwise relationship well?

Expectation of Learnt Relation

• Different queries affected by **different** key

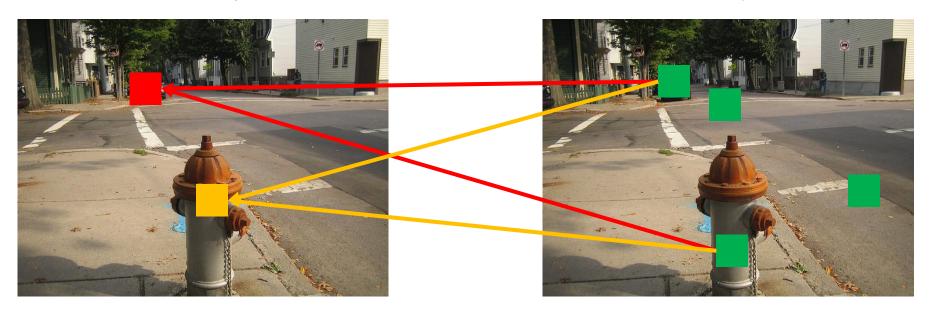


What does the Self-Attention Learn?

- Different queries affected by the **same** keys
- Pairwise in expectation \rightarrow Unary in actual

Query

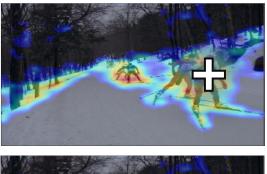
Key

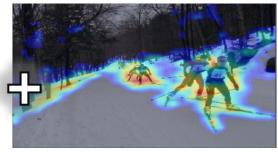


Yue Cao*, Jiarui Xu*, Stephen Lin, Fangyun Wei and Han Hu. GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. ICCVW'2019

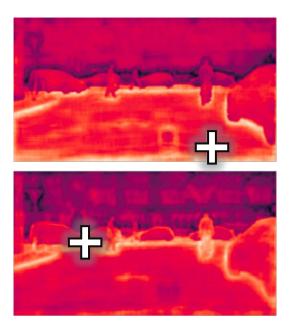
Visualizations on Real Tasks

- 🕂 indicates the query point
- The activation map for different queries are similar
- The self-attention model degenerates to a unary model





Object Detection



Semantic Segmentation

[GCNet, ICCVW'2019] https://arxiv.org/pdf/1904.11492.pdf

WHY?

Revisit Self-Attention Formulation

• The self-attention formulation has a '*hidden*' unary term:

$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp(\mathbf{q}_i^T \mathbf{k}_j) = exp((\mathbf{q}_i - \mathbf{\mu}_q)^T (\mathbf{k}_j - \mathbf{\mu}_k) + \mathbf{\mu}_q^T \mathbf{k}_j)$$

(whitened) pairwise (hidden) unary

* μ_q and μ_k are global average of **q** and **k**

Behavior of the Pairwise and Unary Terms

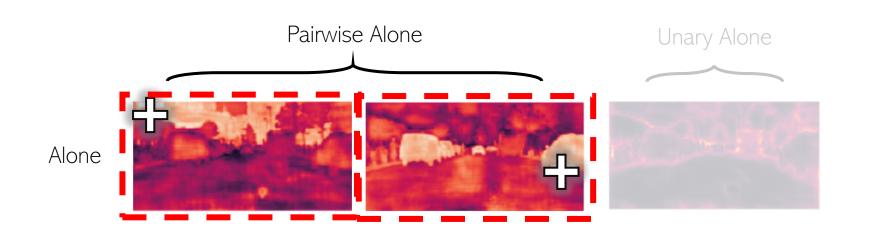
method	fomulation	mloU
Baseline	none	75.8%
Joint (Self-Attention)	$\sim exp(\mathbf{q}_i^T\mathbf{k}_j)$	78.5%
Pairwise Alone	$\sim exp((\mathbf{q}_i - \mathbf{\mu}_q)^T(\mathbf{k}_j - \mathbf{\mu}_k))$	77.5%
Unary Alone	$\sim exp(\mathbf{\mu}_q^T \mathbf{k}_j)$	79.3%

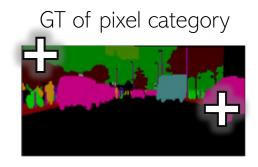
Quantitative results on semantic segmentation (Cityscapes)

- The unary term alone outperforms the standard joint model
- The pairwise and unary terms are **not well learnt** when combined in the self-attention formulation

Visual Meaning of Each Term

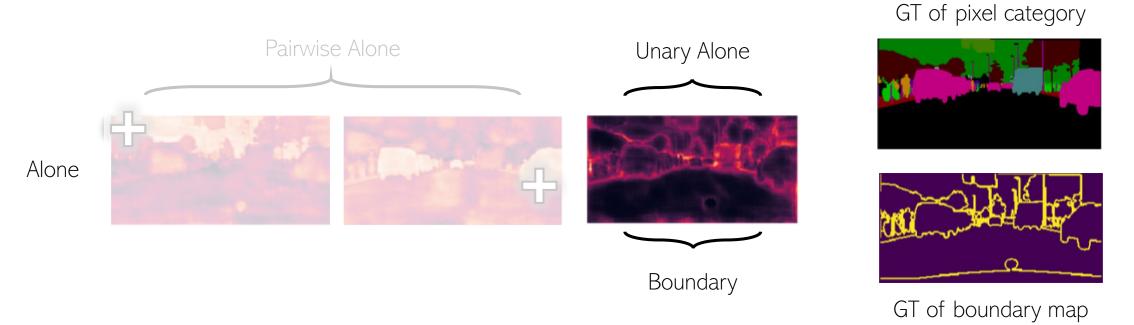
Visual Meaning of Each Term





• The pairwise term tends to learn relations within the **same category region**

Visual Meaning of Each Term

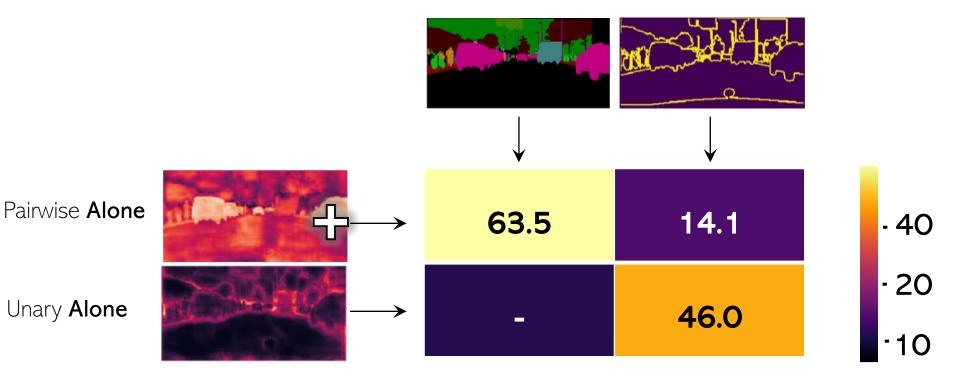


- The pairwise term tends to learn relations within the same category region
- The unary term tends to focus on **boundary pixels**

Visual Meaning of Each Term

• Statistical correlation

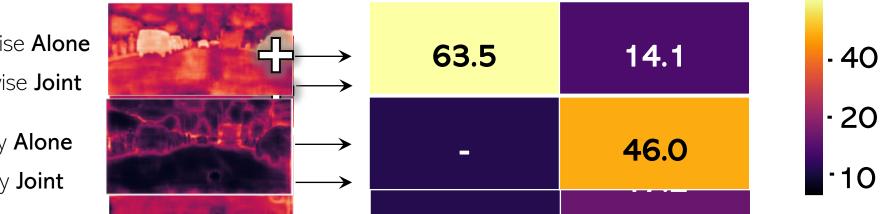
pixel category GT boundary map GT



Comparison with Standard 'Joint' Model

Statistical correlation

pixel category GT boundary map GT



Pairwise Alone Pairwise **Joint**

Unary Alone Unary **Joint**

Why is 'Joint' Worse than 'Alone'?

• Self-Attention is the **multiplicative** combination of pairwise term (w_p) and unary term (w_u) :

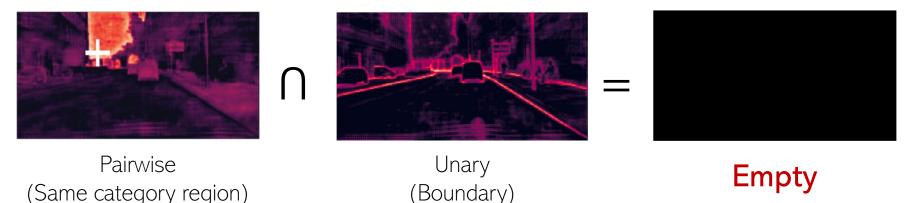
$$w(\mathbf{q}_{i}, \mathbf{k}_{j}) \sim exp((\mathbf{q}_{i} - \boldsymbol{\mu}_{q})^{T}(\mathbf{k}_{j} - \boldsymbol{\mu}_{k}) + \boldsymbol{\mu}_{q}^{T}\mathbf{k}_{j})$$
$$= \underbrace{exp((\mathbf{q}_{i} - \boldsymbol{\mu}_{q})^{T}(\mathbf{k}_{j} - \boldsymbol{\mu}_{k})) \times exp(\boldsymbol{\mu}_{q}^{T}\mathbf{k}_{j})}_{\text{Pairwise } \mathbf{w}_{p}} \qquad \underbrace{\operatorname{Vnary} \mathbf{w}_{u}}_{\text{Unary } \mathbf{w}_{u}}$$

Combination by Multiplication is Bad

• Multiplication couples two terms in gradient computation



• Multiplication acts like **intersection**, resulting in empty if two terms encode different visual clues



Outline

- A Brief Introduction of Self-Attention Models
- The Degeneration Problem and Diagnosis
- Approach and Results

From Intersection (Mul) to Union (Add)

• Union instead of intersection:

• Implement by addition

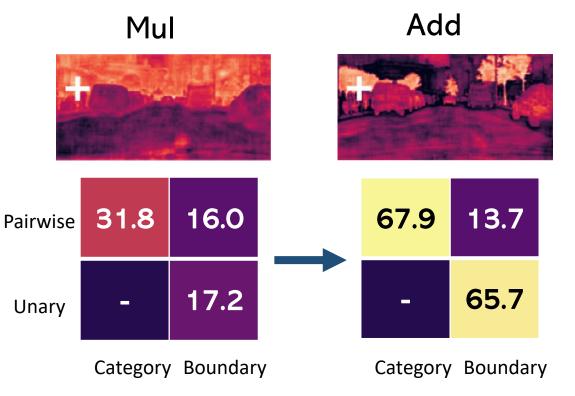
$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp((\mathbf{q}_i - \boldsymbol{\mu}_q)^T (\mathbf{k}_j - \boldsymbol{\mu}_k)) \ast exp(\boldsymbol{\mu}_q^T \mathbf{k}_j)$$

• Gradients are **disentangled** by **addition**

From Intersection (Mul) to Union (Add)

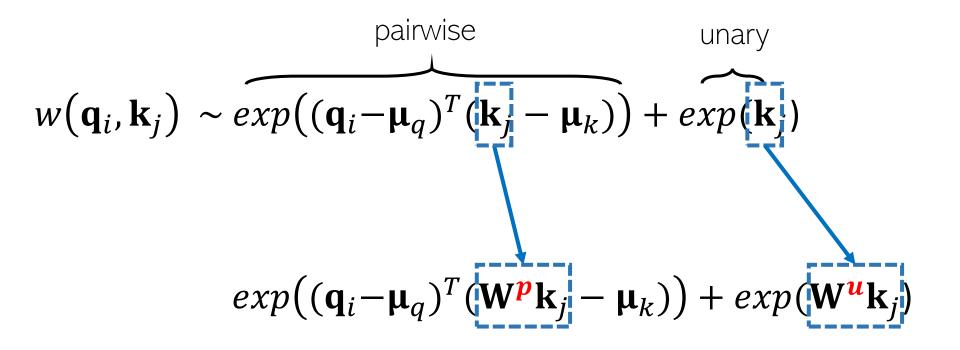
- 0.7 mIoU improvements on Cityscapes
- Significantly clearer visual meaning

method	mloU
Baseline	75.8%
Mul(Self-Attention)	78.5%
Add(Ours)	79.2%



Are There Other Coupling Factors?

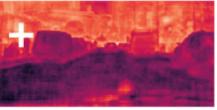
- The key is **shared** in the pairwise term and unary term
- The shared key can be further **disentangled**:



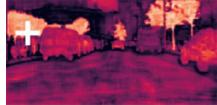
Disentangle the Key Transformations

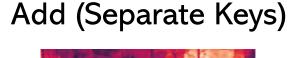
• The pairwise and unary terms learn clearer visual meaning

Mul



Add (Key Shared)





Results by Two Disentangle Techniques

- 2.0 mIoU improvements than self-attention
- 4.7 mIoU improvements than baseline

method	mloU
Baseline	75.8%
Mul (Self-Attention)	78.5%
Add (Shared key)	79.2%
Add (Disentangled key)	80.5%

On Three Semantic Segmentation Benchmarks

• Disentangled Non-Local Neural Networks

- Multiplication to Addition
- Shared keys to Disentangled keys

method	backbone	mloU(%)
Deeplab v3	ResNet101	81.3
OCNet	ResNet101	81.7
Self-Attention	ResNet101	80.8
Ours	ResNet101	82.0
HRNet	HRNetV2-W48	81.9
Self-Attention	HRNetV2-W48	82.5
Ours	HRNetV2-W48	83.0

Cityscapes

method	backbone	mloU(%)
ANN	ResNet101	52.8
EMANet	ResNet101	53,1
Self-Attention	ResNet101	50.3
Ours	ResNet101	54.8
HRNet v2	HRNetV2-W48	54.0
Self-Attention	HRNetV2-W48	54.2
Ours	HRNetV2-W48	55.3
	ADE20K	

method	backbone	mloU(%)
ANN	ResNet101	45.24
OCNet	ResNet101	45.45
Self-Attention	ResNet101	44.67
Ours	ResNet101	45.90
HRNet v2	HRNetV2-W48	42.99
Self-Attention	HRNetV2-W48	44.82
Ours	HRNetV2-W48	45.82

PASCAL-Context

Disentangled Non-Local Network is General

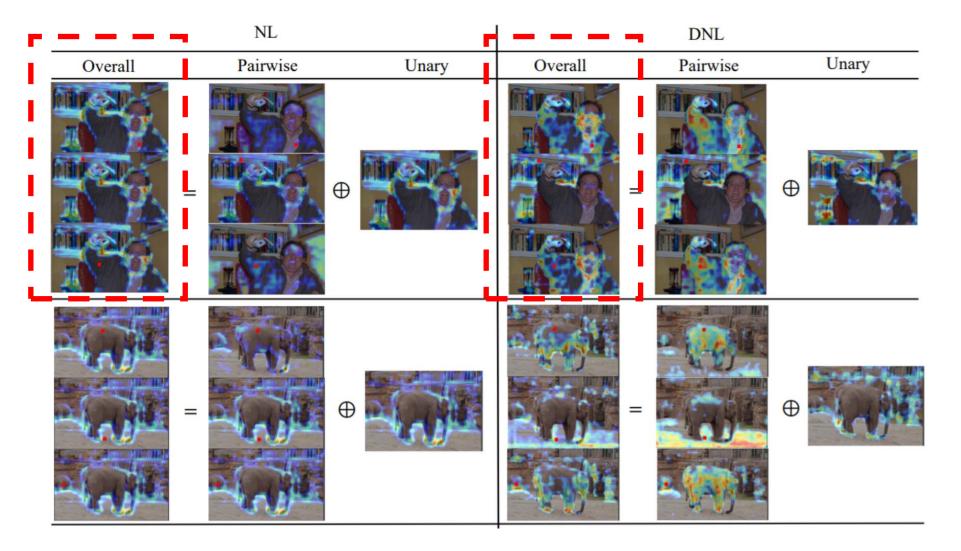
Object detection & instance segmentation, COCO2017 dataset

method	mAP ^{bbox}	mAP ^{mask}
Baseline	38.8	35.1
Self-Attention	40.1	36.0
Disentangled Self-Attention (ours)	41.4	37.3

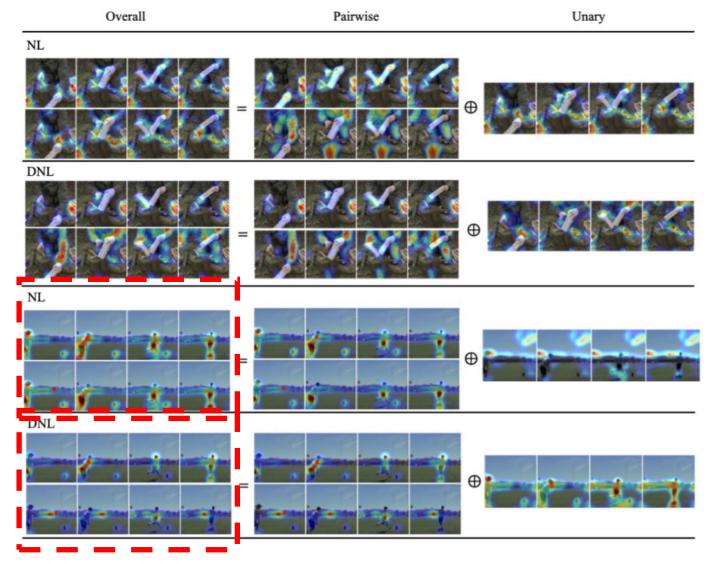
• Action recognition, Kinetics dataset

method	Тор-1 Асс	Тор-5 Асс
Baseline	74.9	91.9
Self-Attention	75.9	92.2
Disentangled Self-Attention (ours)	76.3	92.7

Visualization (Object Detection)



Visualization (Action Recognition)



- Are self-attention models learnt well on visual tasks?
 No [GCNet, ICCVW'2019],
- How can it be more effective?
 - Disentangled design [DNL, ECCV'2020]

DNL code

Semantic Segmentation

Object Detection

in mmsegmentation

https://github.com/yinmh17/DNL-Semantic-Segmentation https://github.com/Howal/DNL-Object-Detection https://github.com/open-mmlab/mmsegmentation/tree/master/configs/dnlnet

