Self-Attention Modeling for Visual Recognition

Han Hu

Visual Computing Group

Microsoft Research Asia (MSRA)

CVPR2020 Tutorial

Overview

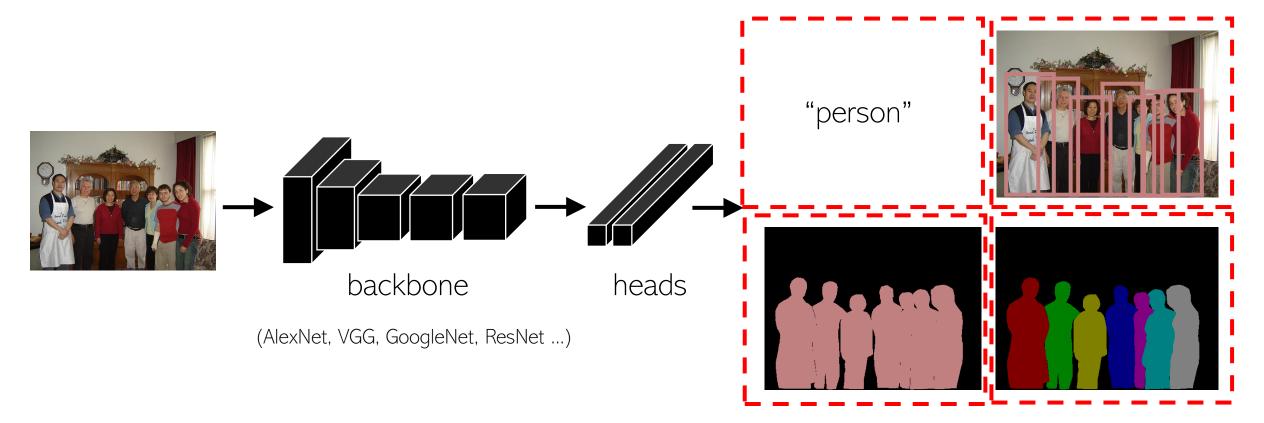
- Part I: Applications of Self-Attention Models for Visual Recognition
 - Pixel-to-pixel relationship
 - Object-to-pixel relationship
 - Object-to-object relationship
- Part II: Diagnosis and Improvement of Self-Attention Modeling
 - Are self-attention models learnt well on visual tasks?
 - How can it be more effective?

Overview

• Part I: Applications of Self-Attention Models for Visual Recognition

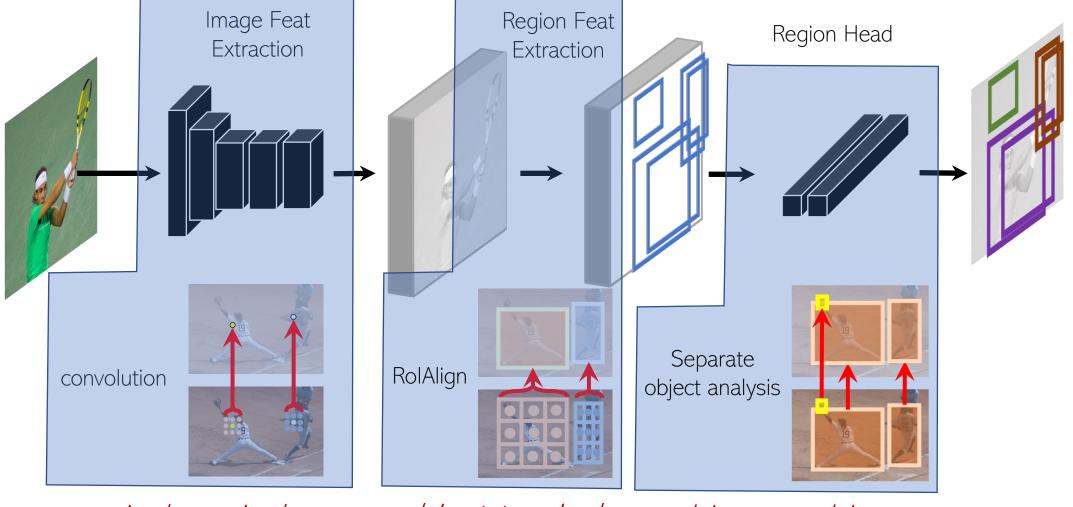
- Pixel-to-pixel relationship
- Object-to-pixel relationship
- Object-to-object relationship
- Part II: Diagnosis and Improvement of Self-Attention Modeling
 - Are self-attention models learnt well on visual tasks?
 - How can it be more effective?

Visual Recognition Paradigm



various recognition tasks

An Object Detection Example

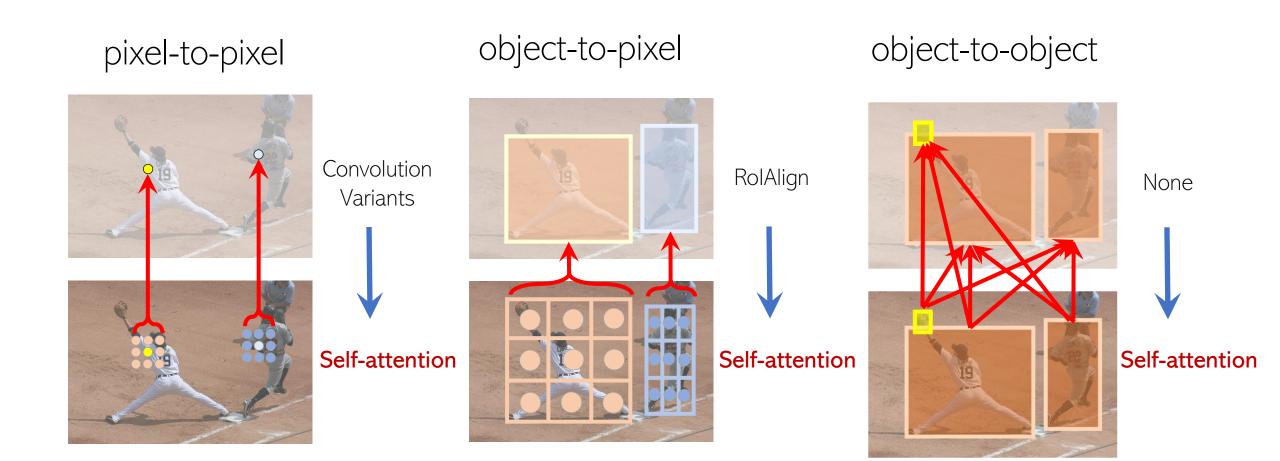


pixel-to-pixel

object-to-pixel

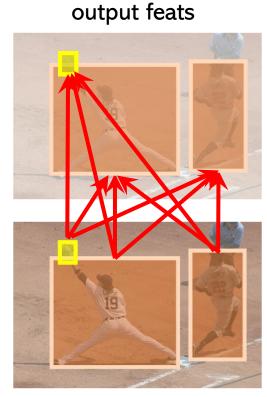
object-to-object

Relationship Modeling of Basic Visual Elements

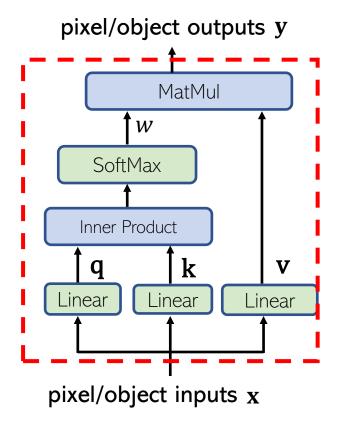


What is a Self-Attention Module?

- Transforms the pixel/object input feature by encoding its relationship with other pixels/objects
- A weighted average of Value, where the weight is the normalized inner product of Query and Key



input feats

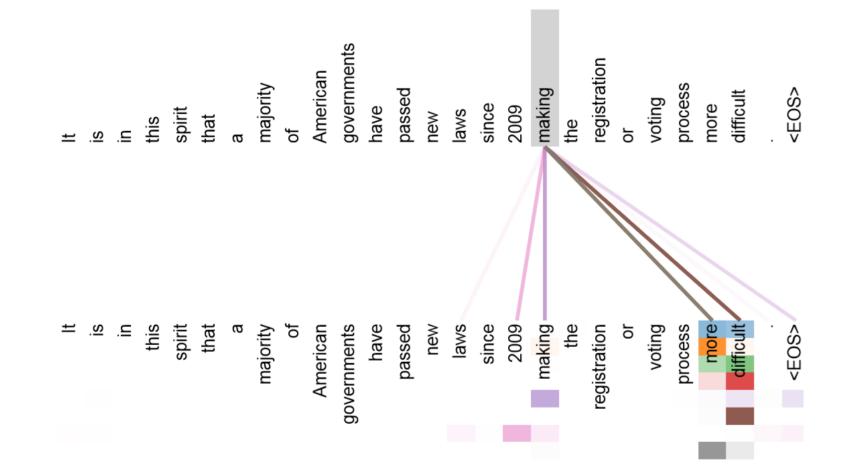


$$\mathbf{y}_i = \sum_{j \in \Omega} w(\boldsymbol{q}_i, \mathbf{k}_j) \, \mathbf{v}_j$$

$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp(\mathbf{q}_i^T \mathbf{k}_j)$$

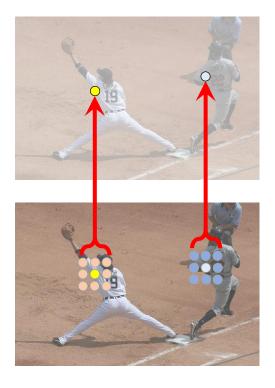
Self-Attention Modules Dominate NLP

Attention is all you need [Ashish Vaswani et al, NeurIPS'2017]

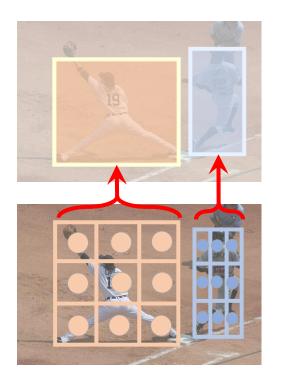


Self-Attention Modules for Vision

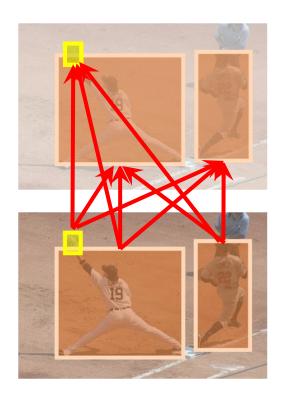
pixel-to-pixel



object-to-pixel



object-to-object



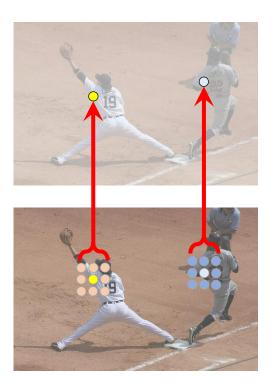
RN, STRN, ...

NL, LR, DNL, ...

LRF, DeTr, ...

Pixel-to-Pixel Relation Modeling

pixel-to-pixel



Convolution Variants

Self-Attention

Usage

✓Complement convolution

✓ Replace convolution

Complement Convolution

• "Convolution is too local"

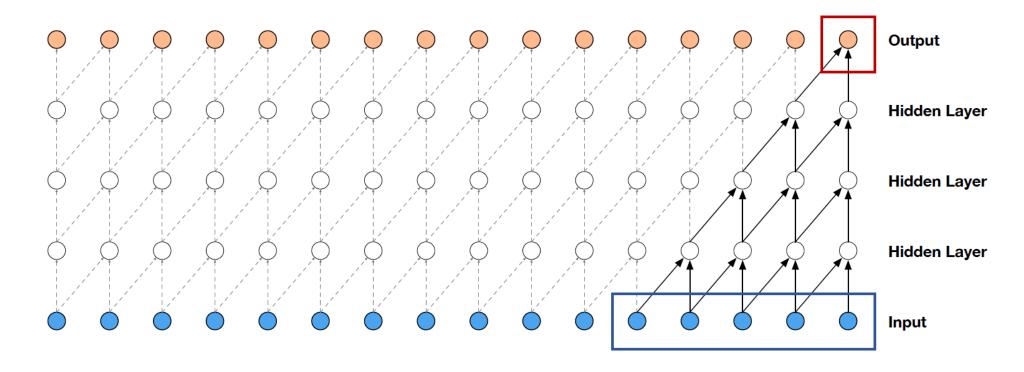
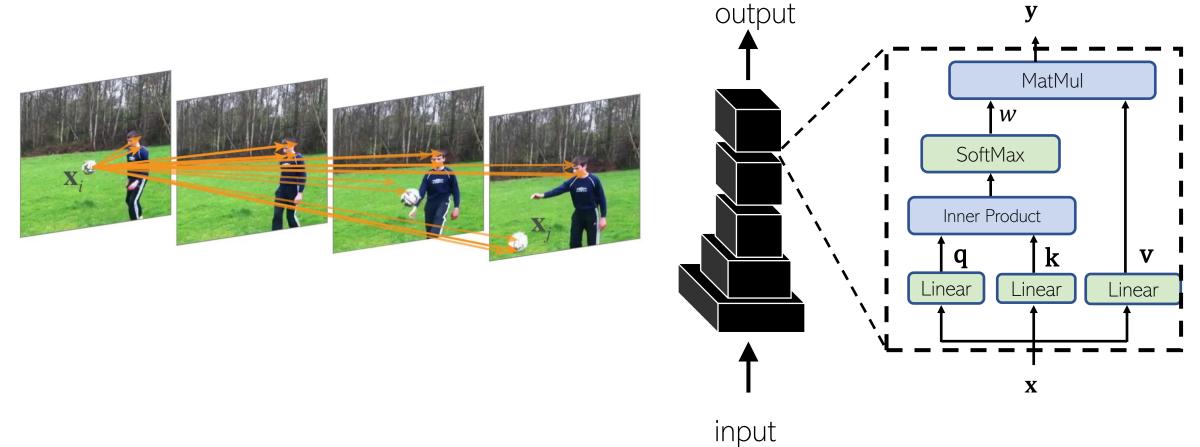


Figure credit: Van Den Oord et al.

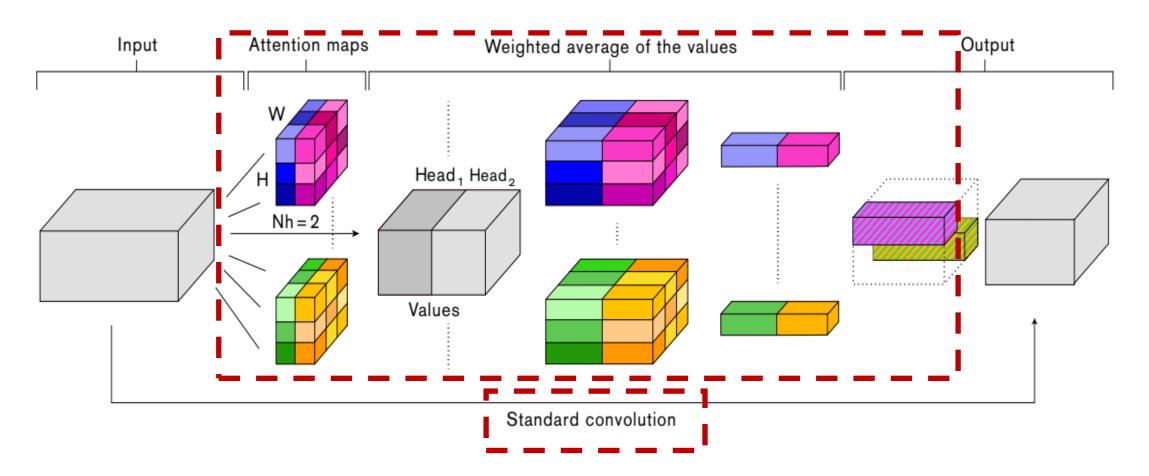
Complement Convolution

• Non-Local Networks [Wang et al, CVPR'2018]



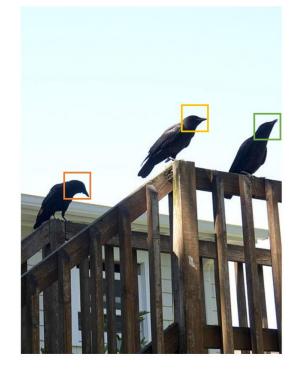
Complement Convolution

• Attention Augmented CNN [Irwan Bello et al, ICCV'2019]

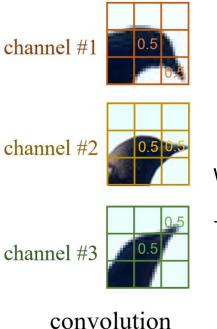


Replace Convolution

• "Convolution is exponentially inefficient"



fixed filters

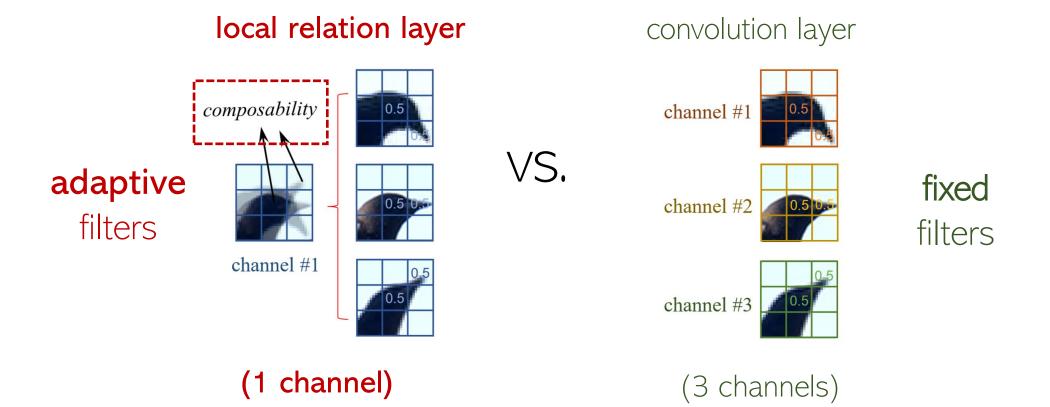


Convolution =Template Matching

We need 3 channels/filters/templates to encode these bird heads!

Replace Convolution

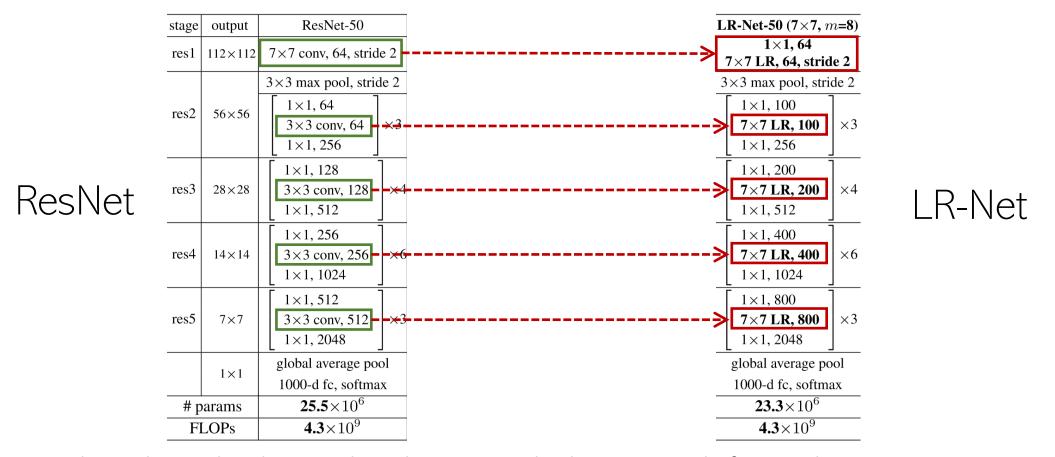
• Adaptive filters (composition) vs. fixed filters (template)



Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

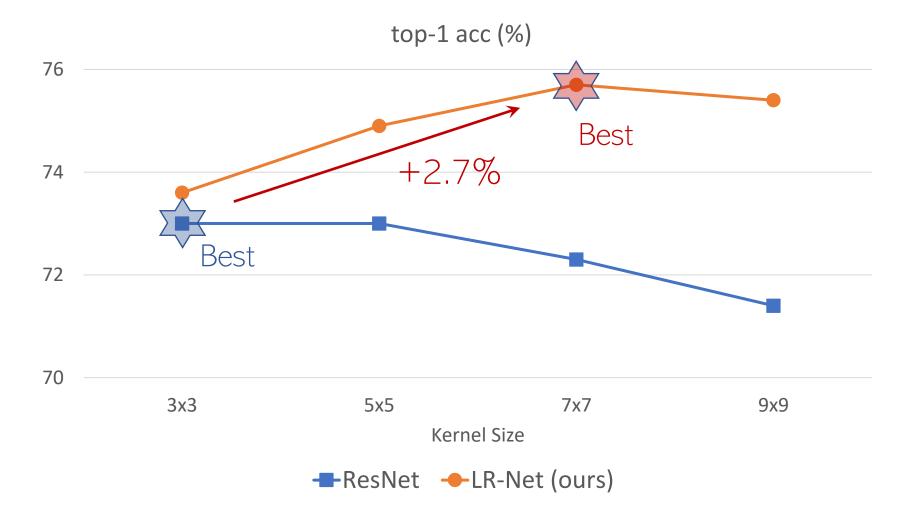
Local Relation Network (LR-Net)

• Replace all convolution layers by local relation layers



Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

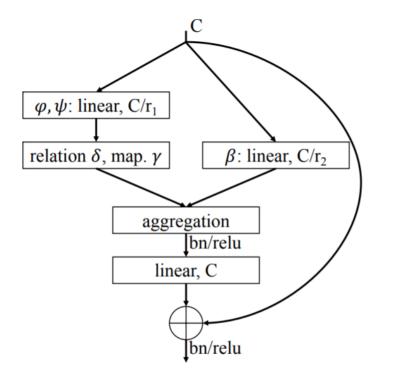
Classification on ImageNet (26 Layers)



Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

Beyond Convolution: More Approaches

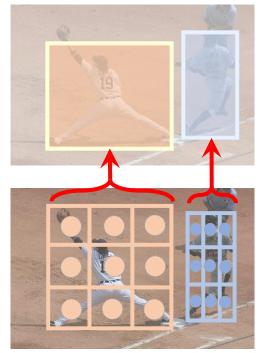
- Stand-Alone Self-Attention Models [NIPS'2019]
- Exploring Self-attention for Image Recognition [CVPR'2020]



	Method	clean	attack $n = 2$		attack $n = 4$	
	Method	top-1	s. rate	top-1	s. rate	top-1
+3.5	ResNet26	73.6	49.0	26.6	98.2	1.0
	SAN10-pair.	74.9	32.8	35.3	90.1	5.3
	SAN10-patch.	77.1	24.5	46.4	85.8	9.6
+2.0	ResNet38	76.0	32.7	39.2	94.1	3.8
	SAN15-pair.	76.6	15.5	47.3	67.5	19.6
	SAN15-patch.	78.0	13.1	54.8	65.6	22.9
+1.3	ResNet50	76.9	19.5	49.3	82.5	11.8
	SAN19-pair.	76.9	13.1	49.1	63.7	21.8
	SAN19-patch.	78.2	12.1	55.1	62.0	24.8

Object-to-Pixel Relation Modeling

object-to-pixel



RolAlign ----- Self-Attention

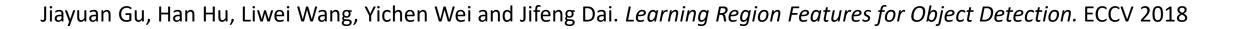
- Learn Region Features [ECCV'2018]
- Transformer Detector [Tech Report'2020]

Learnable Object-to-Pixel Relation

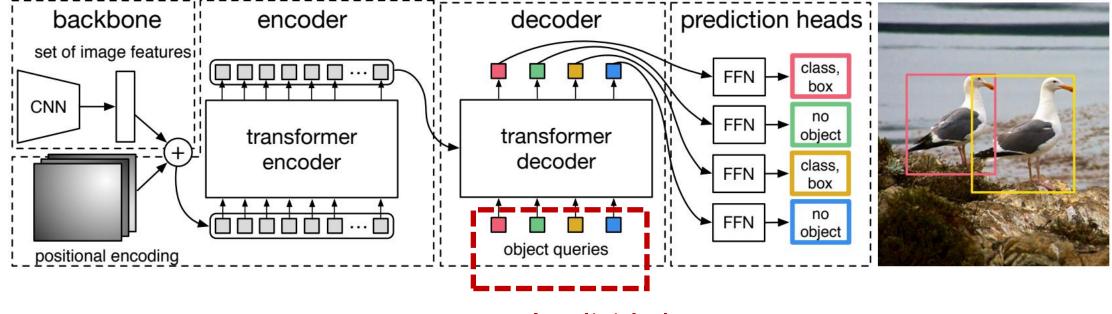


Geometric

Appearance



Transformer Detectors (DETR)

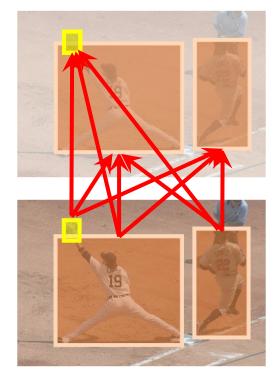


Implicitly learnt

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. *End-to-End Object Detection with Transformers*. Tech Report 2020

Object-to-Object Relation Modeling

object-to-object

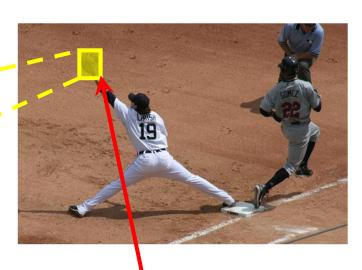


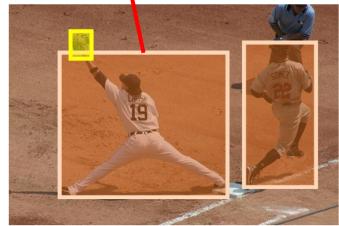
None -----> Self-Attention

- Object Detection
 - Relation Networks [CVPR'2018]
- Video Action Recognition
 - Videos as Space-Time Region Graphs [ECCV'2018]
- Multi-Object Tracking
 - Spatial-Temporal Relation Network [ICCV'2019]
- Video Object Detection
 - RDN [ICCV'2019]
 - MEGA [CVPR'2020]

Object-to-Object Relation Modeling

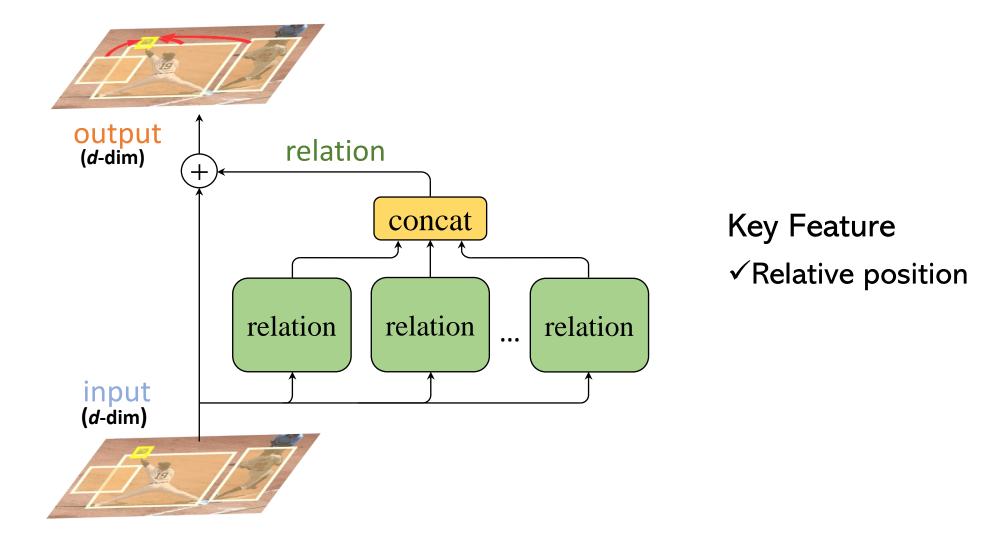
Object-to-Object Relation Modeling





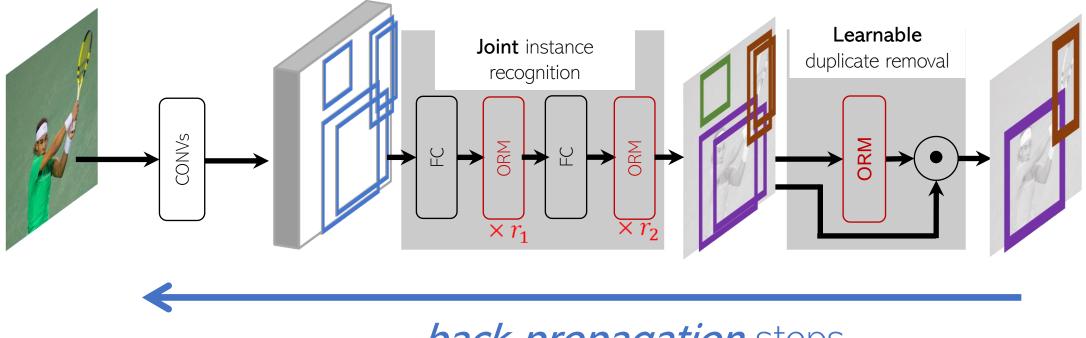
It is much easier to detect the *glove* if we know there is a *baseball player*.

Object Relation Module



Han Hu^{*}, Jiayuan Gu^{*}, Zheng Zhang^{*}, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

The First Fully End-to-End Object Detector



back propagation steps

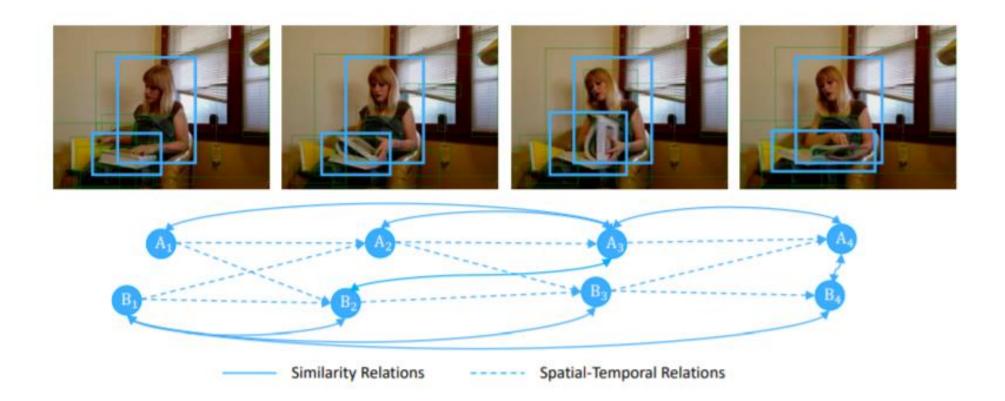
Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. *Relation Networks for Object Detection*. CVPR 2018

On Stronger Base Detectors

backbone	setting	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS
	2fc+SoftNMS	32.2/32.7	52.9/53.6	34.2/34.7	58.3M	122.2B
faster RCNN	2fc+RM+SoftNMS	34.7/35.2	55.3/ 56.2	37.2/37.8	64.3M	124.6B +3.0 mAP
	2fc+RM+e2e	35.2/35.4	55.8 /56.1	38.2/38.5	64.6M	124.9B
	2fc+SoftNMS	36.8/37.2	57.8/58.2	40.7/41.4	56.4M	145.8B
FPN	2fc+RM+SoftNMS	38.1/38.3	59.5/59.9	41.8/42.3	62.4M	157.8B +2.0 mAP
	2fc+RM+e2e	38.8/38.9	60.3/60.5	42.9/43.3	62.8M	158.2B
	2fc+SoftNMS	37.5/38.1	57.3/58.1	41.0/41.6	60.5M	125.0B
DCN	2fc+RM+SoftNMS	38.1/38.8	57.8/ 58.7	41.3/42.4	66.5M	127.4B +1.0 mAP
	2fc+RM+e2e	38.5/39.0	57.8 /58.6	42.0/42.9	66.8M	127.7B

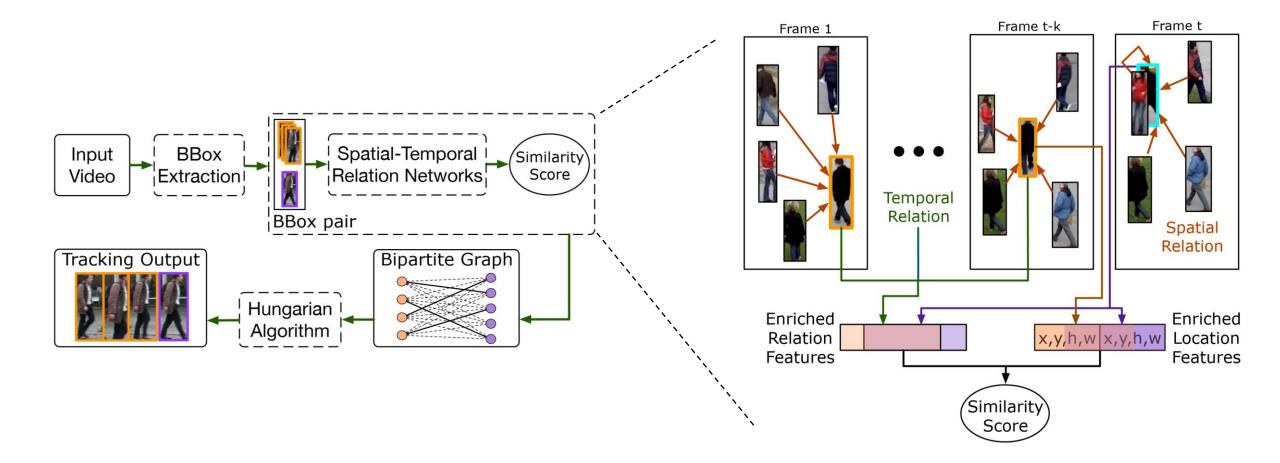
*Faster R-CNN with ResNet-101 model are used (evaluation on *minival/test-dev* are reported)

Video Action Recognition



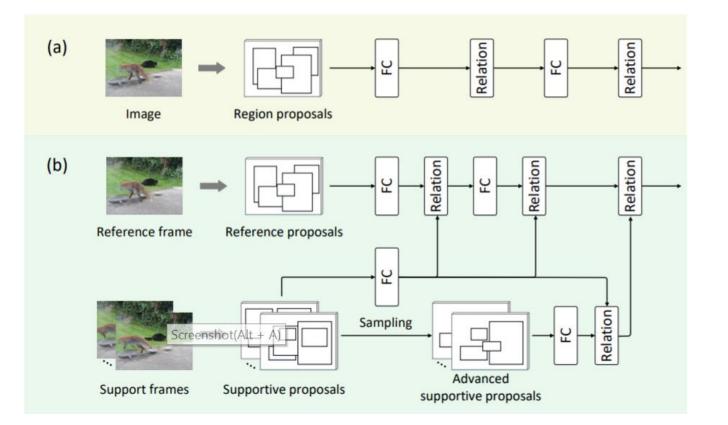
Xiaolong Wang and Abhinav Gupta. Videos as Space-Time Region Graphs. ECCV 2018

Multi-Object Tracking



Jiarui Xu, Yue Cao, Zheng Zhang and Han Hu. Spatial-Temporal Relation Networks for Multi-Object Tracking. ICCV, 2019

Video Object Detection

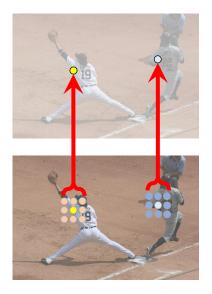


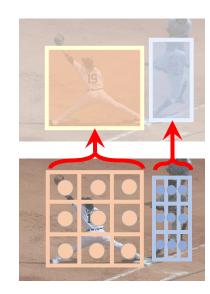
Poster #64 June 18, 2020

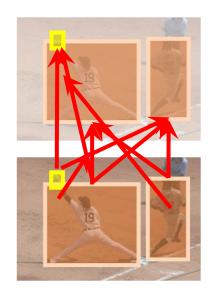
Jiajun Deng, et al. *Relation Distillation Networks for Video Object Detection*. ICCV, 2019 Haiping Wu, et al. *Sequence Level Semantics Aggregation for Video Object Detection*. ICCV, 2019 Yihong Chen, et al. *Memory Enhanced Global-Local Aggregation for Video Object Detection*. CVPR, 2020

Part I Summary

- Part I: Self-Attention Models for Visual Recognition (Application View)
 - Pixel-to-Pixel, Object-to-Pixel, Object-to-Object
 - A strong competitor; complementary to existing architectures; SOTA in video applications
 - There is still much room to improve!



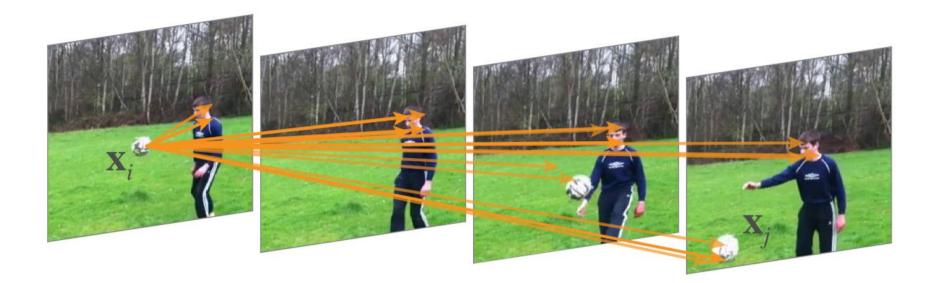




Overview

- Part I: Applications of Self-Attention Models for Visual Recognition
 - Pixel-to-Pixel
 - Object-to-Pixel
 - Object-to-Object
- Part II: Diagnosis and Improvement of Self-Attention Modeling
 - Are self-attention models learnt well on visual tasks?
 - How can it be more effective?
 - [GCNet, ICCVW'2019] https://arxiv.org/pdf/1904.11492.pdf
 - [Disentangled Non-Local Networks, Arxiv'2020] https://arxiv.org/pdf/2006.06668.pdf

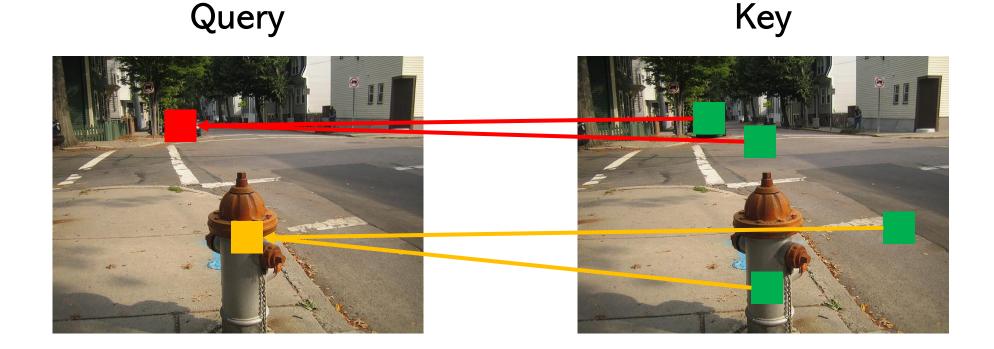
Self-Attention Encodes Pairwise Relationship



Does it learn pairwise relationship well?

Expectation of Learnt Relation

• Different queries affected by **different** key

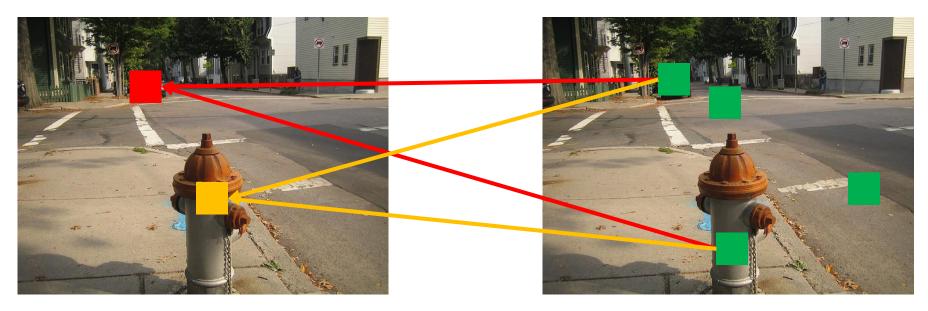


What does the Self-Attention Learn?

- Different queries affected by the **same** keys
- Pairwise in expectation \rightarrow Unary in actual

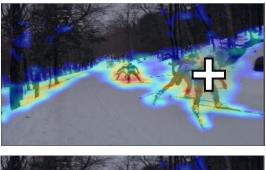
Query

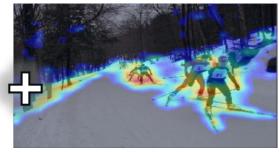
Key



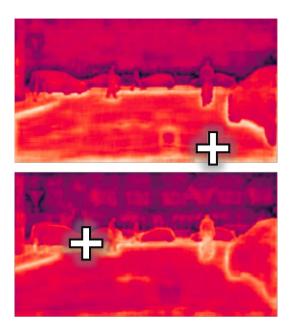
Visualizations on Real Tasks

- 🕂 indicates the query point
- The activation map for different queries are similar
- The self-attention model degenerates to a unary model





Object Detection



Semantic Segmentation

[GCNet, ICCVW'2019] https://arxiv.org/pdf/1904.11492.pdf

WHY?

Revisit Self-Attention Formulation

• The self-attention formulation has a '*hidden*' unary term:

$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp(\mathbf{q}_i^T \mathbf{k}_j) = exp((\mathbf{q}_i - \mathbf{\mu}_q)^T (\mathbf{k}_j - \mathbf{\mu}_k) + \mathbf{\mu}_q^T \mathbf{k}_j)$$

(whitened) pairwise (hidden) unary

* μ_q and μ_k are global average of **q** and **k**

Behavior of the Pairwise and Unary Terms

method	fomulation	mloU
Baseline	none	75.8%
Joint (Self-Attention)	$\sim exp(\mathbf{q}_i^T\mathbf{k}_j)$	78.5%
Pairwise Alone	$\sim exp((\mathbf{q}_i - \mathbf{\mu}_q)^T(\mathbf{k}_j - \mathbf{\mu}_k))$	77.5%
Unary Alone	$\sim exp(\mathbf{\mu}_q^T \mathbf{k}_j)$	79.3%

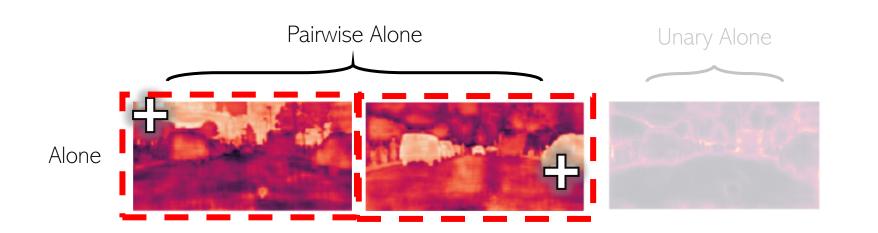
Quantitative results on semantic segmentation (Cityscapes)

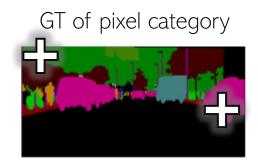
- The unary term alone outperforms the standard joint model
- The pairwise and unary terms are **not well learnt** when combined in the self-attention formulation

Visual Meaning of Each Term



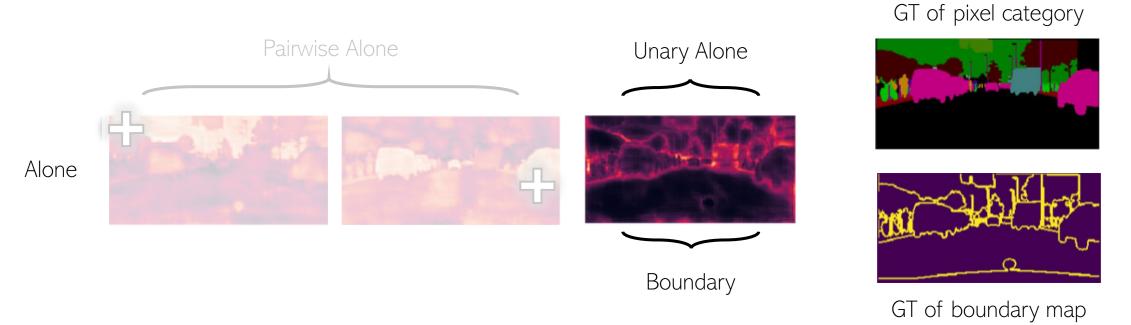
Visual Meaning of Each Term





• The pairwise term tends to learn relations within the **same category region**

Visual Meaning of Each Term

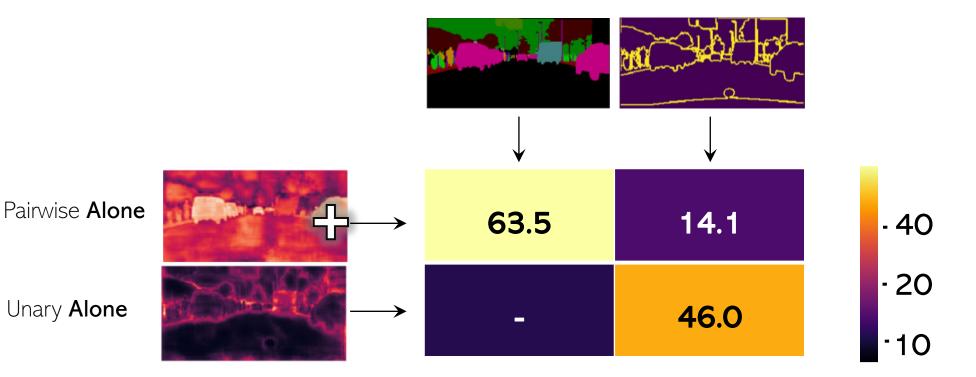


- The pairwise term tends to learn relations within the same category region
- The unary term tends to focus on **boundary pixels**

Visual Meaning of Each Term

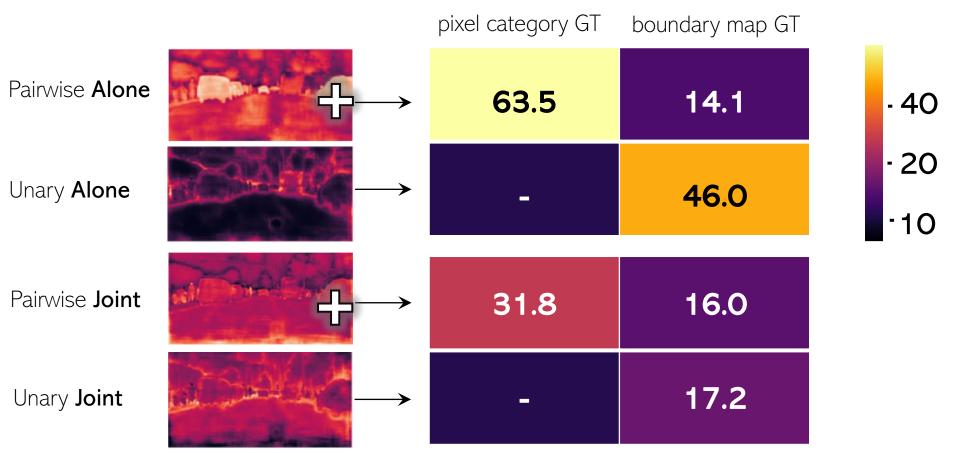
• Statistical correlation

pixel category GT boundary map GT



Comparison with Standard 'Joint' Model

• Statistical correlation



Why is 'Joint' Worse than 'Alone'?

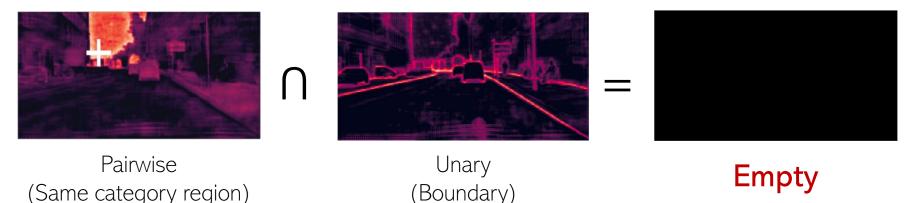
• Self-Attention is the **multiplicative** combination of pairwise term (w_p) and unary term (w_u) :

$$w(\mathbf{q}_{i}, \mathbf{k}_{j}) \sim exp((\mathbf{q}_{i} - \boldsymbol{\mu}_{q})^{T}(\mathbf{k}_{j} - \boldsymbol{\mu}_{k}) + \boldsymbol{\mu}_{q}^{T}\mathbf{k}_{j})$$
$$= \underbrace{exp((\mathbf{q}_{i} - \boldsymbol{\mu}_{q})^{T}(\mathbf{k}_{j} - \boldsymbol{\mu}_{k})) \times exp(\boldsymbol{\mu}_{q}^{T}\mathbf{k}_{j})}_{\text{Pairwise } \mathbf{w}_{p}} \qquad \underbrace{\operatorname{Vnary} \mathbf{w}_{u}}_{\text{Unary } \mathbf{w}_{u}}$$

Combination by Multiplication is Bad

• Multiplication couples two terms in gradient computation

• Multiplication acts like **intersection**, resulting in empty if two terms encode different visual clues



From Intersection (Mul) to Union (Add)

• Union instead of intersection:

• Implement by addition

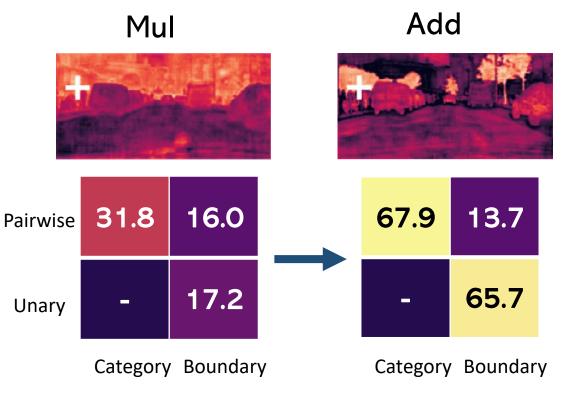
$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp((\mathbf{q}_i - \boldsymbol{\mu}_q)^T (\mathbf{k}_j - \boldsymbol{\mu}_k)) + exp(\boldsymbol{\mu}_q^T \mathbf{k}_j)$$

• Gradients are **disentangled** by **addition**

From Intersection (Mul) to Union (Add)

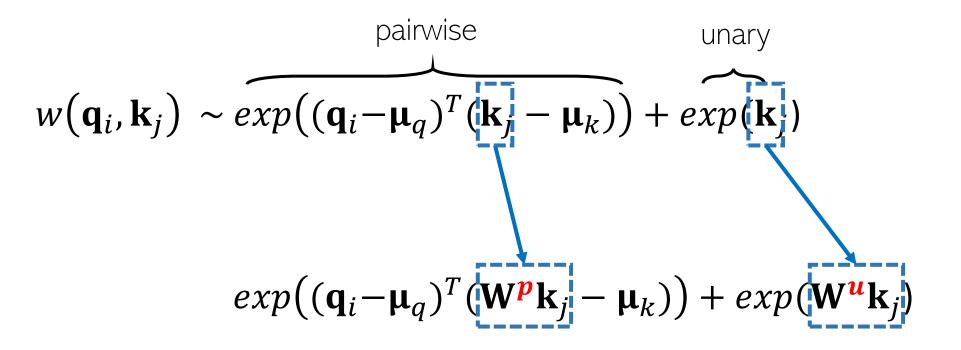
- 0.7 mIoU improvements on Cityscapes
- Significantly clearer visual meaning

method	mloU
Baseline	75.8%
Mul(Self-Attention)	78.5%
Add(Ours)	79.2%



Are There Other Coupling Factors?

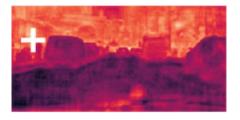
- The key is **shared** in the pairwise term and unary term
- The shared key can be further **disentangled**:



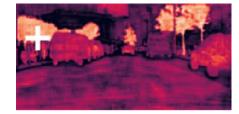
Disentangle the Key Transformations

• The pairwise and unary terms learn clearer visual meaning

Mul



Add (Key Shared)



Results by Two Disentangle Techniques

- 2.0 mIoU improvements than self-attention
- 4.7 mIoU improvements than baseline

method	mloU
Baseline	75.8%
Mul (Self-Attention)	78.5%
Add(Shared key)	79.2%
Add (Disentangled key)	80.5%

On Three Semantic Segmentation Benchmarks

• Disentangled Non-Local Neural Networks

- Multiplication to Addition
- Shared keys to Disentangled keys

method	backbone	mloU(%)
Deeplab v3	ResNet101 81.	
OCNet	ResNet101	81.7
Self-Attention	ResNet101	80.8
Ours	ResNet101	82.0
HRNet	HRNetV2-W48	81.9
Self-Attention	HRNetV2-W48	82.5
Ours	HRNetV2-W48	83.0

method	backbone	mloU(%)
ANN	ResNet101	52.8
EMANet	ResNet101	53,1
Self-Attention	ResNet101	50.3
Ours	ResNet101	54.8
HRNet v2	HRNetV2-W48	54.0
Self-Attention	HRNetV2-W48	54.2
Ours	HRNetV2-W48	55.3
ADE20K		

method	backbone	mloU(%)
ANN	ResNet101	45.24
OCNet	ResNet101	45.45
Self-Attention	ResNet101	44.67
Ours	ResNet101	45.90
HRNet v2	HRNetV2-W48	42.99
Self-Attention	HRNetV2-W48	44.82
Ours	HRNetV2-W48	45.82

PASCAL-Context

Cityscapes

Disentangled Non-Local Network is General

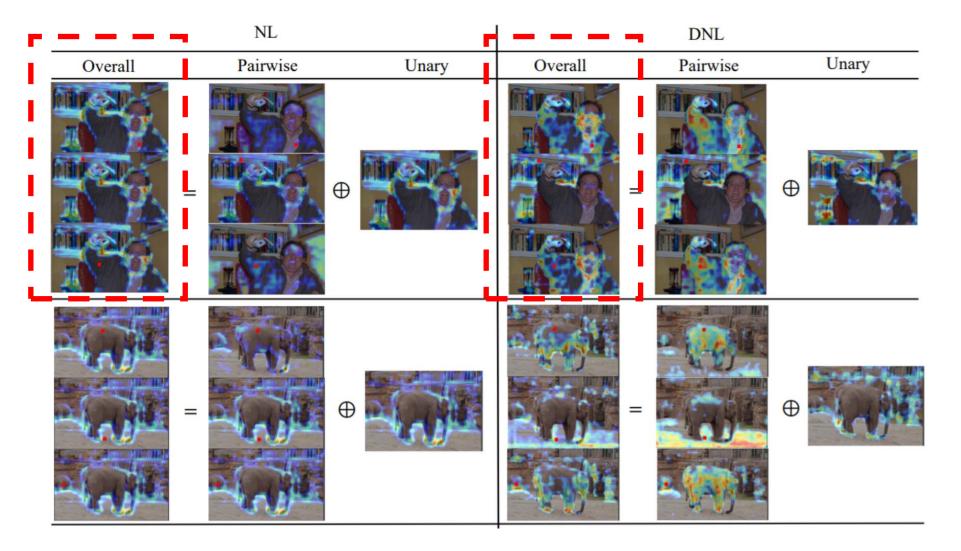
• Object detection & instance segmentation, COCO2017 dataset

method	mAP ^{bbox}	mAP ^{mask}
Baseline	38.8	35.1
Self-Attention	40.1	36.0
Disentangled Self-Attention (ours)	41.4	37.3

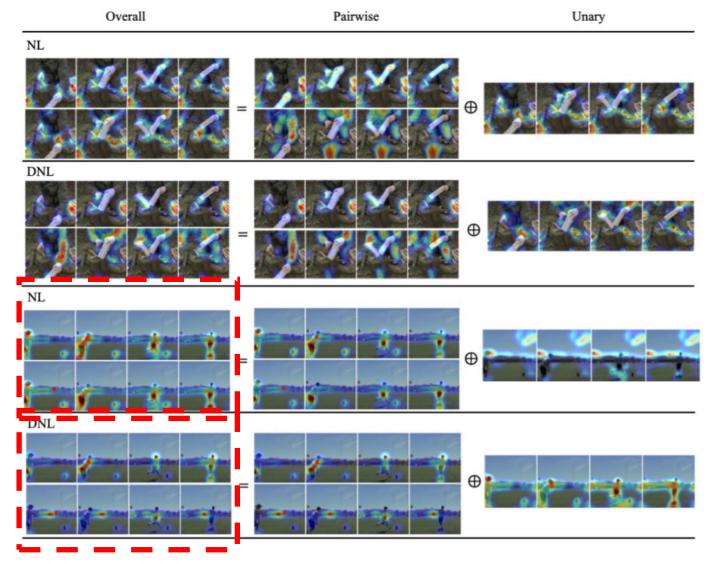
• Action recognition, Kinetics dataset

method	Тор-1 Асс	Тор-5 Асс
Baseline	74.9	91.9
Self-Attention	75.9	92.2
Disentangled Self-Attention (ours)	76.3	92.7

Visualization (Object Detection)



Visualization (Action Recognition)



Summary

- Part I: Self-Attention Models for Visual Recognition (Application View)
 - Pixel-to-Pixel, Object-to-Pixel, Object-to-Object
 - A strong competitor; complementary to existing architectures; SOTA in video applications
 - There is still much room to improve!
- Part II: Diagnosis and Improvement (Modeling View)
 - Are self-attention models learnt well on visual tasks?
 - No [GCNet, ICCVW2019],
 - How can it be more effective?
 - [DNL, Tech Report 2020]

Yue Cao*, Jiarui Xu*, Stephen Lin, Fangyun Wei and Han Hu. *GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond*. ICCVW'2019

Minghao Yin *, Zhuliang Yao*, Yue Cao, Xiu Li, Zheng Zhang, Stephen Lin, and Han Hu. *Disentangled Non-Local Neural Networks*. Tech Report 2020

Thanks All!