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Abstract

Subspace clustering is a powerful technology for clus-
tering data according to the underlying subspaces. Rep-
resentation based methods are the most popular subspace
clustering approach in recent years. In this paper, we an-
alyze the grouping effect of representation based methods
in depth. In particular, we introduce the enforced group-
ing effect conditions, which greatly facilitate the analysis
of grouping effect. We further find that grouping effect is
important for subspace clustering, which should be explic-
itly enforced in the data self-representation model, rather
than implicitly implied by the model as in some prior work.
Based on our analysis, we propose the SMooth Represen-
tation (SMR) model. We also propose a new affinity mea-
sure based on the grouping effect, which proves to be much
more effective than the commonly used one. As a result, our
SMR significantly outperforms the state-of-the-art ones on
benchmark datasets.

1. Introduction

In many computer vision and machine learning problem-
s, the data can be viewed as points drawn from multiple low-
dimensional subspaces, with each subspace corresponding
to one category or class, e.g., point trajectories of moving
objects captured by an affine camera [24], images of sev-
eral subjects under varying illumination or under differen-
t poses [6], and local patches or texture features of pixel-
s/superpixels on an image [20]. A basic task for processing
such kind of data is to cluster the points according to the un-
derlying subspace. Such a task is called subspace clustering
[26].

1.1. Related Work

Existing methods for subspace clustering can be rough-
ly grouped into three categories: algebra based, statistics
based, and spectral clustering based [26].

Most of the early studies on subspace clustering are al-
gebra or statistics based. The two most well known algebra-
ic methods are perhaps the shape interaction matrix (SIM)
[2] and generalized principal component analysis (GPCA)
[27]. Although with elegant formulations, in general the
performance of these methods drops quickly in the pres-
ence of noise, degeneracy, or partially coupled subspaces.
The statistics based methods treat subspace clustering as a
mixed data inference problem and thus some popular meth-
ods from the more general statistical learning field can be
used, such as random sample consensus (RANSAC) [5] and
expectation maximization (EM) [12]. Although there have
been several new techniques developed to improve the cri-
terion (e.g., agglomerative lossy compression (ALC) [22]),
model selection (e.g., Branch and Bound (BB) [10]), the
performance of these methods is limited by their dependen-
cy on estimating the exact subspace models.

Many of the recent studies focus on the spectral clus-
tering based methods [21, 30, 3, 16, 29, 19, 18, 17]. The
major differences among these methods lie in the way they
build the affinity matrix. A direct way is to compute affinity
matrix from existing algebraic methods [21] or by defin-
ing a point-to-subspace or subspace-to-subspace distance
metric [30]. More recently, many works apply the self-
representation idea to compute affinities [3, 16, 29, 19, 18,
17], i.e., represent every sample by a linear combination of
other samples, which result in state-of-the-art performance.
These methods first compute a self-representation matrix
Z∗ by solving

min
Z

α∥X −A(X)Z∥l +Ω(X,Z),

s.t. Z ∈ C,
(1)

where X ∈ Rd×n is the data matrix with each column being
a sample vector, A(X) is a dictionary matrix which could
be learnt or be simply set as A(X) = X , ∥ · ∥l is a prop-
er norm, Ω(X,Z) and C are the regularizer and constraint
set on Z, respectively, and α > 0 is a trade-off parame-
ter. Then Z∗ is used to compute an affinity matrix, e.g.,
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Table 1. The choices of Ω(X,Z), ∥ · ∥l, and C of existing repre-
sentation based methods.

Ω(X,Z) ∥ · ∥l C
SSC [3, 4] ∥Z∥1 ∥ · ∥1 {Z|Zii = 0}

LRR [16, 15] ∥Z∥∗ ∥ · ∥2,1 ∅

SSQP [29] ∥ZTZ∥1 ∥ · ∥2F
{Z|Z ≥ 0,
Zii = 0}

MSR [19] ∥Z∥1 + δ∥Z∥∗ ∥ · ∥2,1 {Z|Zii = 0}
LSR [18] ∥Z∥2F ∥ · ∥2F ∅

LSR-Z [18] ∥Z∥2F ∥ · ∥2F {Z|Zii = 0}
CASS [17]

∑
i

∥Xdiag(zi)∥∗ ∥ · ∥2F ∅

(|Z∗|+|Z∗T |)/2, which is further input into a spectral clus-
tering algorithm [23] to produce the final clustering result.
The existing methods distinguish each other by employing
different regularization terms Ω(Z) or constraint sets C. Ta-
ble 1 summarizes the choices of Ω, ∥ · ∥l, and C of existing
representation based methods, where ∥ · ∥1 is the ℓl norm,
i.e., sum of the absolute values of all entries, ∥ · ∥2,1 is the
ℓ2,1 norm, i.e., sum of the ℓ2 norms of the column vectors,
∥ · ∥∗ is the nuclear norm, i.e., sum of singular values, and
∥ · ∥F is the Frobenious norm, i.e., square root of the sum
of squared entries. Since the term ∥X − XZ∥l concern-
s about representation error and it is not the main focus of
our paper, we use ∥X −XZ∥2F in the sequel.

1.2. Contributions

Lu et al. [18, 17] discovered that Least Squares Regres-
sion (LSR) [18] and Correlation Adaptive Subspace Seg-
mentation (CASS) [17] models both have the grouping ef-
fect defined as follows.

Definition 1 (Grouping Effect): Given a set of d-
dimensional data points X = [x1, · · · ,xn] ∈ Rd×n, a
self-representation matrix Z = [z1, · · · , zn] ∈ Rn×n has
grouping effect if ∥xi − xj∥2 → 0 ⇒ ∥zi − zj∥2 → 0,
∀i ̸= j.

Inspired by [18, 17], we analyze the grouping effect of
representation based method in depth. In particular, we
introduce the enforced grouping effect (EGE) conditions,
which can greatly facilitate the analysis of grouping effect
of a representation based method. By the EGE conditions,
we easily find new models that also have the grouping effec-
t. In contrast, Lu et al. [18, 17] proved the grouping effect
of LSR and CASS in a case-by-case way. Their proofs are
specific and hence cannot be applied to other models.

We further find that grouping effect is actually important
for subspace clustering. So we propose to explicitly enforce
the grouping effect in the representation model. In contract,
prior work [18, 17] only passively discovered that LSR and
CASS have the grouping effect.

Finally, based on our analysis we propose the SMooth

Representation (SMR) model. We also propose a novel
affinity measure based on the grouping effect, which proves
to be much more effective than the commonly used measure
(|Z∗|+ |Z∗T |)/2. Our experiments on benchmark datasets
show that our SMR significantly outperforms the state-of-
the-art approaches.

2. Grouping Effect
The grouping effect was first explicitly stated by Lu et al.

[18, 17], who showed that in LSR and CASS when the sam-
ples are close to each other their representation coefficients
are also close to each other. Their proofs are specific for
LSR and CASS and cannot be applied to other models. In
this section, we analyze the grouping effect of reconstruc-
tion based models in depth. We first introduce the Enforced
Grouping Effect (EGE) conditions, which can help us iden-
tify the grouping effect easily. Then we investigate why
grouping effect helps subspace clustering.

2.1. Enforced Grouping Effect Conditions

We introduce general sufficient conditions for the group-
ing effect as follows.

Definition 2 (Enforced Grouping Effect Conditions):
The EGE conditions on problem (1) are:

(1) A(X) is continuous with respect to X and Ω(X,Z)
is continuous with respect to X and Z ∈ C;

(2) Problem (1) has a unique solution Z∗ and Z∗ is not
an isolated point of C.

(3) Z ∈ C if and only if ZP ∈ C, and Ω(X,Z) =
Ω(XP,ZP ), for all permutation matrix P .

(4) A(XP ) = A(X)P , Z ∈ C if and only if PTZP ∈ C,
and Ω(X,Z) = Ω(XP,PTZP ), for all permutation ma-
trix P .

Then we have the following lemma.

Lemma 1: If Problem (1) satisfies the EGE conditions (1)
and (2), then its optimal solution Z∗ is a continuous func-
tion of X .

Proof : It is obvious that Z∗ can be regarded as a function
of X according to EGE condition (2). In the following, we
prove the continuity of Z∗ w.r.t X .

Suppose Z∗ is discontinuous with respect to X and X =
X1 is a discontinuity point. We have: ∃ε1 > 0, ∀δ1 > 0,
there exist ∥X2 −X1∥F < δ1 that ∥Z∗

2 − Z∗
1∥F > ε1.

Denote f(X,Z) = ∥X − A(X)Z∥l + αΩ(X,Z). S-
ince Problem (1) has a unique solution, we have ∃ε2 >
0, f(X2, Z

∗
2 ) < f(X2, Z

∗
1 ) − ε2. According to EGE

condition (1), f(X,Z) is continuous with respect to X:
for any ε3 > 0, there exists δ2 > 0 such that for al-
l ∥X − X2∥F < δ2 ⇒ |f(X,Z∗

2 ) − f(X2, Z
∗
2 )| < ε3

and there exists some number δ3 > 0 such that for all
∥X −X2∥F < δ3 ⇒ |f(X,Z∗

1 )− f(X2, Z
∗
1 )| < ε3.



Suppose 2ε3 < ε2, δ1 ≤ δ2, and δ1 ≤ δ3. We have

f(X1, Z
∗
2 ) < f(X2, Z

∗
2 ) + ε3

< f(X2, Z
∗
1 ) + ε3 − ε2

< f(X1, Z
∗
1 ) + 2ε3 − ε2

< f(X1, Z
∗
1 ).

(2)

Eq. (2) indicates that Z∗
2 is a better solution of Problem

(1) when X = X1, which is a contradiction. Hence the
continuity of Z∗ w.r.t. X is proved. �

Then we have the following proposition.

Proposition 1: The optimal solution Z∗ to problem (1) has
grouping effect if EGE conditions (1), (2), and (3) are satis-
fied.

Proof : We first instantiate X by X1. Consider two suf-
ficiently close points xi and xj in X1. For simplicity we
informally write ∥a − b∥F → 0 to denote that a and b are
close to each other. Exchanging the two columns xi and
xj , we get a new data matrix X2 = X1Pij , where Pij is the
permutation matrix by exchanging the ith and jth columns
of the identity matrix. It is obvious that ∥X2 −X1∥F → 0
and A(X2)−A(X1)∥F → 0.

Given EGE condition (3), it is easy to check that Z∗
2 =

Z∗
1P is the unique optimal solution of problem (1) when

X = X2. By Lemma 1, we have that ∥X2 −X1∥F → 0 ⇒
∥Z∗

2 − Z∗
1∥F → 0. Therefore, ∥zi − zj∥2 → 0 as Z∗

2 and
Z∗
1 only differ in the ith and jth columns. �

We now check the grouping effect of existing representa-
tion based methods listed in Table 1 by the above EGE con-
ditions. SSC [3, 4] does not satisfy the conditions. Indeed,
it does not have the grouping effect. For example, consider-
ing X = [x1,x2,x3] with x1 = x2 = x3, any permutation
matrix satisfying diag(Z) = 0 would be the optimal solu-
tion to SSC. For LSR, all EGE conditions are satisfied. So
it has the grouping effect. Figures 1(a)-(c) also exemplify
our above observations. For LRR [16, 15], it is obvious that
EGE conditions (1) and (3) are satisfied. The uniqueness of
the optimal solution to LRR can also be proven, as stated
in Proposition 2. Hence, LRR has the grouping effect. The
optimal solution of CASS [17] is unique according to [8],
and it also has the grouping effect.

Proposition 2: LRR has a unique optimal solution.

Proof : Please find it in the supplementary material. �
Proposition 1 not only provides a way to determine the

grouping effect of existing methods, it may also help us to
design new methods with grouping effect. For example, the
following families of methods have grouping effects.

Proposition 3: Problems (1) with the following Ω(Z) and
C have grouping effect:

(1) Ω(Z) =
n∑

j=1

(
n∑

i=1

|Zij |p
)q

, p > 1, q ≥ 1
p , C = ∅.

(2) Ω(Z) = tr((ZHZT )p),H ≻ 0, p ≥ 1/2, C = ∅.

(3) Ω(Z) = tr((ZTHZ)p),H ≻ 0, p ≥ 1/2, C = ∅.

Proof : We put it in the supplementary material. �
It should be noted that the constraint set C = {Zii =

0, ∀i}, as used by some existing methods, such as SSC [4],
SSQP [29], MSR [19] and LSR-Z [18], does not satisfy the
EGE condition (3). Accordingly, these methods do not have
the grouping effect in a strict sense. However, these meth-
ods also perform well. So we generalize the concept of
grouping effect as follows in order to comply with such an
observation.

Definition 3 (Permutated Grouping Effect): Given a
set of data points X = [x1, . . . ,xn] ∈ Rd×n, a self-
representation matrix Z = [z1, . . . , zn] ∈ Rn×n has per-
muted grouping effect if ∥xi − xj∥2 → 0 ⇒ ∥PT

ij zi −
zj∥2 → 0, where PT

ij is the permutation matrix by exchang-
ing the ith and the jth rows of the identity matrix.

Then we have the following proposition.

Proposition 4: The optimal solution Z∗ to problem (1) has
permutated grouping effect if EGE conditions (1), (2), and
(4) are satisfied.

Proof : Similar to the proof of Proposition 1, we form a new
data matrix X2 = X1Pij . By EGE conditions (2) and (4),
Z∗
2 = PT

ijZ
∗
1Pij is the unique optimal solution to problem

(1) when X = X2. If ∥xi − xj∥F → 0, then by Lemma 1
we have ∥Z∗

2 − Z∗
1∥F → 0, implying ∥PT

ij zi − zj∥2 → 0.
�

One may check that the constraint set C = {Zii = 0,∀i}
satisfy the EGE condition (4). So by Proposition 4, SSQP
[29], MSR [19] and LSR-Z [18] have the permutated group-
ing effect.

2.2. Why Grouping Effect?

It was claimed by Lu et al. [18] that the effectiveness
of LSR comes from the grouping effect. However, in [18]
there is no convincing evidence to support this claim. In this
section, we provide two viewpoints to advocate this proper-
ty for representation based methods.

We first analyze the grouping effect from the viewpoint
of optimization. The first term in Problem (1) penalizes the
reconstruction error, which can be regarded as a first-order
energy encoding the whole subspace structure of the data.
The grouping effect of a representation matrix indicates that
Ω(Z) and C in Problem (1) must include a second-order en-
ergy to penalize the discontinuities in the representation co-
efficients, either implicitly or explicitly. With this second-
order energy, the representation will be stable. On the oth-
er hand, spatially close data points may help each other to
prevent over-fitting in reconstruction the samples. For ex-
ample, in Figure 1(a), we consider the faces marked by the
green and purple squares. They are very close in appearance
but with a large part shadowed, hence violating the subspace
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Figure 1. Grouping effect of representation based methods. (a)-(d)
Face images in the Extended Yale Face B dataset, displayed af-
ter reducing the dimensionalities of their features to two by PCA,
where the features are: (a) the original image, (b)-(d) represen-
tation matrices computed by LSR [18], SSC [3], and our SMR,
respectively. We can see that LSR and SMR map the spatially
close samples in (a) (marked by green and purple boxes) to spa-
tially close ones (green and purple boxes in (b) and (d)), while
SSC does not (green and purple boxes in (c)). Also note that SMR
maps the two samples closer than LSR and on the whole the face
images are better separated by SMR.

constraints [6]. LSR and our proposed SMooth Representa-
tion (SMR, see Section 3.3) have the grouping effect. They
represent the two faces closely in the new space and are al-
so clustered correctly (Figures 1(b) and (d)). However, SSC
does not include the discontinuity penalties, making the rep-
resentations of the two faces far away from each other and
finally being wrongly clustered (Figure 1(c)).

From the viewpoint of affinity measure, the most com-
monly used affinity measure is (|Z∗| + |Z∗T |)/2. In gen-
eral, the grouping effect implies that spatially close points
have similar affinities with other points. We describe this
formally in Proposition 5.

Proposition 5: If the EGE conditions (1), (2), and (4) are
satisfied, for all ∥xi−xj∥ → 0, we have: (1) |Z∗

ii−Z∗
jj | →

0, |Z∗
ij − Z∗

ji| → 0; (2) ∀k ̸= i, j, |Z∗
ik − Z∗

jk| → 0 and
|Z∗

ki − Z∗
kj | → 0.

Proof : According to Proposition 4, we have ∥Z∗
2−Z∗

1∥F →
0, where Z∗

2 = PT
ijZ

∗
1Pij . Hence (1) and (2) result. �

Proposition 5 indicates that grouping effect usually lead-
s to a well balanced affinity graph, which is regarded to
be helpful for spectral clustering [28]. In addition, based
on Proposition 5, grouping effect enables us to define a
new affinity measure for subspace clustering. We will show
that this affinity measure performs better than the common-

ly used one (|Z∗| + |Z∗T |)/2 when the self-representation
model have grouping effect.

3. Smooth Representation Clustering
In this section, based on the detailed analysis on group-

ing effect, we propose a novel subspace clustering method,
called Smooth Representation (SMR) clustering. We first
introduce how to explicitly enforce grouping effect in the
representation model, then present the SMR model.

3.1. Enforcing Grouping Effect

As stated in Section 2.1, LRR and LSR utilize the group-
ing effect implicitly. The grouping effect can be understood
as the smooth dependence of feature on the sample. We
may write the regularization term of LSR as follows:

Ω(Z) = tr(ZZT )

= 1
2

n∑
i=1

n∑
j=1

∥zi − zj∥22 +
1
n∥Z

Te∥22,
(3)

where e is the all ones vector. It can be viewed as assigning
equal weights to all pairs of representations, regardless of
whether the representations are close to each other or not.
By the analysis in Section 2, we should enforce the group-
ing effect explicitly by the affinity of samples. One possi-
bility is adopting the following regularization term:

Ω(Z) = 1
2

n∑
i=1

n∑
j=1

wij ∥zi − zj∥22
= tr(ZLZT ),

(4)

where W = (wij) is the weight matrix measuring the s-
patial closeness of points and L = D − W is the Lapla-
cian matrix, in which D is the diagonal degree matrix with

Dii =
n∑

j=1

wij . A common way to construct W is to use

the k nearest neighbor (k-nn) graph with a heat kernel or
0-1 weights [9]. We find that the simple 0-1 weighted k-nn
graph performs well enough in our experiments, as exempli-
fied in Figure 1(d). So we use the 0-1 weighted k-nn graph
(a default value of k is 4) in all our experiments. There are
also more complex graphs, e.g., affinity graphs produced by
other subspace clustering algorithms. However, usually we
did not observe evident improvements over the k-nn graph.

3.2. Smooth Representation

To avoid numerical instability issue, we enforce L to be
strictly positive definite by adding a ϵI and use L̃ = L +
ϵI instead, where I is the identity matrix and 0 < ϵ ≪
1. A default value of ϵ is 0.01. Then we get our smooth
representation model:

min
Z

f(Z) = α∥X −XZ∥2F + tr(ZL̃ZT ). (5)



Problem (5) is a smooth convex program. Differentiating
the objective function f(Z) with respect to Z and setting it
to zero, we get the optimal solution Z∗ satisfies

αXTXZ∗ + Z∗L̃ = αXTX. (6)

The above equation is a standard Sylvester equation [1].
It has a unique solution.

Proposition 6: The Sylvester equation (6) has a unique so-
lution.

Proof : XTX is positive semi-definite. So all of its eigen-
values are nonnegative: λi ≥ 0,∀i. L̃ is positive definite.
So all of its eigenvalues are positive µj > 0, ∀j. Hence, for
any eigenvalues of XTX and L̃, λi + µj > 0. According
to [14], the Sylvester equation (6) has a unique solution. �

A classical algorithm for the Sylvester equation is the
Bartels-Stewart algorithm [1], which consists of transform-
ing the coefficient matrices into Schur forms by QR decom-
position, and then solving the resulting triangular system
via back-substitution. The algorithm has a computational
complexity of O(n3).

The solution to Problem (5) also has several nice proper-
ties according to Proposition 7.

Proposition 7: The solution to Problem (5) has the follow-
ing properties: (1) it has grouping effect; (2) it is block di-
agonal when the subspaces are independent and the data is
noise free.

Proof : (1) We can easily check that Problem (5) satisfies
EGE conditions (1), (2), and (3). According to Proposition
1, its solution has the grouping effect.

(2) When the columns of the data matrix X is permu-
tated by any permutation matrix P , we have L̃(XP ) =
PT L̃(X)P . Hence, Ω(ZP ) = tr(ZPL̃(XP )PTZT ) =

tr(ZL̃(X)ZT ) = Ω(Z). Denote ZD =

[
A 0
0 D

]
,

where A and D are from Z =

[
A B
C D

]
. Substituting

Z and ZD into Equation (4), we have Ω(Z) ≥ Ω(ZD),
where the equality holds if and only if B = C = 0, and
Ω(ZD) = Ω(A) + Ω(D). So Ω(Z) satisfies the Enforced
Block Diagonal Condition [18]. According to Theorem 2
in [18], its optimal solution is block diagonal when the sub-
spaces are independent and the data is noise free. �

Furthermore, benefiting from the strengthening of group-
ing effect, the representations derived by SMR usually have
much larger gap between the within-class and the between-
class distances than those by LRR and LSR, as illustrated in
qualitatively Figure 1(d) and quantitatively Figure 2. This
property implies the SMR can derive more salient within-
class affinities with regard to the between-class ones than
the methods when using the measures described in Section
3.3.
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Figure 2. Comparing gaps between the within-class (wc.) and
between-classes (bc.) representation distances of LRR, LSR and
SMR on the USPS handwritten digit dataset. For each digit image,
the 5% closest images in the wc. and bc. sets respectively are se-
lected for illustration. We can see that SMR has much larger gaps
than LRR and LSR.

3.3. Subspace Clustering by SMR

After obtaining the self-representation matrix Z∗, a com-
mon way for subspace clustering is to define an affinity ma-
trix as

J1 = (|Z∗|+ |Z∗T |)/2 (7)

and use the spectral clustering algorithm [23] to produce the
final clustering results, as has been used by SSC, LRR and
LSR.

The effectiveness of J1 mainly comes from the block di-
agonal property of Z∗, leaving the nice property of group-
ing effect unexploited. To exploit the merit of grouping ef-
fect, we define a new affinity matrix as

J2 =

(∣∣∣∣∣ z∗Ti z∗j
∥xi∥2∥xj∥2

∣∣∣∣∣
γ)

, (8)

where γ > 0 is used to control the affinity variances. The
new affinity measure can be regarded as the inner product of
the new representation vectors normalized by the norms of
their original features. The normalization prevents the affin-
ity measure from biased by the original feature amplitudes,
which is very common in the motion segmentation problem
whose trajectories usually vary a lot in amplitude. Figure
3 shows the affinity matrices of the two measures based on
Z∗ derived by SMR. It can be seen that J2 strengthens the
affinities within each cluster and weakens them across clus-
ters.

The whole procedure of subapace clustering by SMR is
summarized in Algorithm 1.



(a) (b) (c)

Figure 3. Comparing of J1 and J2. (a) Sample images from Ex-
tended Yale Face B datasets; (b) affinity matrix J1; (c) affinity ma-
trix J2 (γ = 2). The block diagonal structure of J2 is more salient
than that of J1. In particular, the magnitudes of off-block-diagonal
entries are much smaller.

Algorithm 1 Subspace Clustering by SMooth Representa-
tion (SMR)
Require: Data points X = [x1, · · · ,xn] ∈ Rd×n, the

number of subspaces m
1: Build a k-nn graph W and compute the corresponding

Laplacian matrix L̃.
2: Solve the Sylvester equation (6) by the Bartels-Stewart

algorithm to get a representation matrix Z∗.
3: Compute affinity matrix by either (7) or (8).
4: Use spectral clustering algorithm to obtain m clusters.

4. Experiments
In this section, we apply our SMR1 to three applications

of subspace clustering: motion segmentation, face cluster-
ing, and handwritten digit clustering. We also compare SM-
R with representative reconstruction based methods, such as
SSC, LRR and LSR, whose performances are state-of-the-
art.

4.1. Datasets and Evaluation Metric

We use three datasets for our experiments: Hopkins155
[25], Extended Yale Face B [7] and USPS [11], which are
the most popular benchmark datasets used in the literature
for evaluating subspace clustering algorithms. For all the
algorithms, the best results are reported.

Hopkins155 [25] is a motion segmentation dataset, con-
sisting of 155 video sequences with extracted feature points
and their tracks across frames. See Figure 4 for some sam-
ple sequences. We use PCA to project the data into a 12-
dimensional subspace. The same as in most literatures,
for each algorithm, we use the same parameters for all se-
quences [26].

Extended Yale Face B [7] is a face clustering dataset,
which consists of 192× 168 pixel cropped face images, un-
der varying poses and illuminations, from 38 human sub-
jects. We use all the 64 frontal face images of the first 10

1Codes available at https://sites.google.com/site/hanhushomepage/

Figure 4. Some sample images from Hopkins155 datasets. The
tracks marked in different color indicate different motions. From
left to right, they are: 1R2RC, cars3 and people2.

Table 2. Clustering errors (CE) using affinity measure (7) and the
computation times on Hopkins155 datasets. The computation time
includes only the computation of Z∗ in Problem (1).

method SSC LRR LSR SMR
CE (%) 3.90 4.11 3.01 2.27
time (s) 2.50 2.03 0.12 0.40

subjects, and resize the images to 32×32. We also use PCA
to project the data into a 10× 6-dimensional subspace.

USPS [11] is a handwritten digit dataset of 9298 images,
with each image having 16×16 pixels. We use the first 100
images of each digit for experiments.

The same as in most literatures, we use clustering error
(CE) to measure the accuracy [25]. CE is the minimum
error by matching the clustering result and the ground truth
under the optimal permutation, formally defined as:

CE = 1− 1

N

N∑
i=1

δ(pi,map(qi)), (9)

where qi, pi represent the output label and the ground truth
one of the ith point; δ(x, y) = 1 if x = y, and δ(x, y) = 0
otherwise; map(qi) is the best mapping function that per-
mutes clustering labels to match the ground truth labels and
it can be efficiently computed by the Kuhn-Munkres algo-
rithm [13].

4.2. Experimental Results

For fair comparison, we adopt the Frobenius norm for the
reconstruction error term for all the algorithms. Table 2 lists
the motion segmentation errors of the four methods on the
Hopkins155 datasets using the typical affinity measure (7).
SMR achieves a clustering error of 2.27%, while the best re-
sult of other algorithms is 3.01% by LSR. It should be noted
that the numbers in Table 2 are different from those listed in
[18] because they used an approximate computation of CE,
which is also observed by [4]. Noting that most sequences
are easy to be segmented and hence all the algorithms get
zero errors on them, the performance improvement by SMR
over others is significant. The computational costs of all the
algorithms are also listed in Table 2. SMR is a bit slower
than LSR but much faster than SSC and LRR.



Table 3. Clustering errors (CE) using affinity measure (8) with γ =
1 on Hopkins155 datasets.

method SSC LRR LSR SMR
CE (%) 6.27 2.83 1.90 1.13
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Figure 5. The performance of SMR with varying α on Hopkins155
datasets (4-nn graph is used).

As stated in Section 3.3, the affinity measure (8) is better
in exploiting the grouping effect. So we also use affinity
measure (8) for experiments and report the clustering er-
rors in Table 3. It can be seen that the performances of
LRR, LSR and SMR are significantly improved, and SMR
get the minimum segmentation error with 1.13%. The SSC
with the new affinity measure (8) performs worse than using
the traditional affinity (7). These results support the use of
affinity measure (8) rather than (7) for subspace clustering
when the self-representation model has grouping effect.

We also test the performance of SMR with varying pa-
rameters α (in the objective function of (1)) and k (for con-
structing the k-nn graph). The results are shown in Figure 5
and Figure 6. SMR performs very stably with varying α and
the number k of neighborhood. Since other algorithms rely
on only one parameter α, to be fair we use a 4-nn graph for
all our experiments without tuning k on different datasets.

Tables 4 and 5 show the clustering errors on Extended
Yale Face B and USPS datasets, respectively. To make fair
comparison, we use the traditional affinity measure (7) in all
the algorithms. The number of our algorithm using the new
affinity (8) is also shown in the last column for reference.
It can be seen that SMR outperforms the others significant-
ly, especially on the USPS datasets. We also illustrate the
affinity matrices using (7) in Figure 7, where we can clear-
ly observe better grouping effect from SMR than from the
others. When the affinity (8) J2 is used, the performances
are further improved. For example, we achieve 3.75% on
Extended Yale Face B.
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Figure 6. The performance of SMR with varying k in k-nn graph
construction, where for each k, the optimal α is reported.

Table 4. Clustering errors (CE) on Extended Yale Face B datasets.

method SSC LRR LSR SMR SMR(J2)
CE (%) 48.81 35.00 27.50 26.56 3.75

Table 5. Clustering errors (CE) on USPS datasets.

method SSC LRR LSR SMR SMR(J2)
CE (%) 43.10 22.60 26.10 12.70 11.20

5. Conclusions and Future Work
In this paper, we analyze the grouping effect of repre-

sentation based methods in depth. We introduce Enforced
Grouping Effect conditions to verify whether a represen-
tation based model has the grouping effect in a system-
atic manner. We also provide insights to the importance
of grouping effect for subspace clustering. Based on our
detailed analysis, we propose a novel subspace clustering
model, Smooth Representation, to explicitly enforce the
grouping effect in the model. We further propose a nov-
el affinity measure that better utilizes the grouping effec-
t among representation coefficients. Extensive experiments
on benchmark datasets testify to the great advantage of SM-
R over the state-of-the-art subspace clustering methods. In
the future, we plan to utilize the grouping effect in a wider
scope, e.g., semi-supervised learning.
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Figure 7. Affinity matrices derived by SSC, LRR, LSR, and SMR on USPS datasets using (7). The affinities are normalized by 0.6·max(Z∗)
to have better view. The grouping effect of SMR is much more salient than those of others.
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In this document, we prove Proposition 2 and Proposition 3 in detail.
To prove Proposition 2, we first provide two lemmas:

Lemma S.1 [1]: Given a subspace S spanned by a set of orthogonal basis [u1, . . . ,ur] (ui ∈ Rn×1) and its orthogonal
complement S⊥, for any matrix M ∈ Rn×k, ∀k, there exist a unique pair M1 ∈ S and M2 ∈ S⊥ such that

M = M1 +M2. (1)

Lemma S.2: Let A and B be matrices of the same size. If ABT = 0 and ATB = 0, then ∥A+B∥∗ = ∥A∥∗ + ∥B∥∗.

Proof : Note the singular value decompositions (SVDs) of A and B as:

A = UAΣAV
T
A , B = UBΣBV

T
B , (2)

where UA and UB are left-invertible; and VA and VB are right-invertible. From the condition ABT = 0, we get V T
A VB = 0.

Similarly, ATB = 0 implies UT
AUB = 0. Hence,

A+B =
[
UA UB

] [ ΣA

ΣB

] [
VA VB

]T (3)

is a valid SVD of A+B. It is easy to check that ∥A+B∥∗ = ∥A∥∗ + ∥B∥∗. �
Proposition 2: The LRR problem (4) [2] has a unique optimal solution.

min
Z

f(Z) = α∥X −XZ∥2F + ∥Z∥∗. (4)

Proof : Note the SVD of X as X = UΣV T with U ∈ Rd×r, Σ = diag(s) (si > 0,∀1 ≤ i ≤ r) and V ∈ Rn×r. Note S as
the subspace spanned by columns of V , and S⊥ as the orthogonal complement of S.

Suppose Z∗ is an optimal solution of problem (4). According to Lemma S.1, there exist a unique pair Z∗
1 ∈ S and

Z∗
2 ∈ S⊥ that Z∗ = Z∗

1 + Z∗
2 . Next we prove that Z∗

2 must equal 0.
Suppose Z∗

2 ̸= 0. We have ∥Z∗
2∥∗ > 0. The condition Z∗

2 ∈ S⊥ implies XZ∗
2 = UΣV TZ∗

2 = 0. Then

f(Z∗) = α||X −XZ∗||2F + ||Z||∗
= α||X −X(Z∗

1 + Z∗
2 )||2F + ||Z∗

1 + Z∗
2 ||∗

= α||X −XZ∗
1 ||2F + ||Z∗

1 ||∗ + ||Z∗
2 ||∗

> f(Z∗
1 )

(5)

Equation (5) indicates Z∗
1 is a better solution of problem (4) than Z∗, which is a contradiction. Hence Z∗

2 = 0 is proved.
As a result, we have Z∗ = Z∗

1 .
The condition Z∗

1 ∈ S indicates that there exists a unique matrix W ∈ Rr×n that

Z∗
1 = VW. (6)

1
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Substituting equation (6) into problem (4), we get a new optimization about W as

min
W

g(W ) = α∥X −XVW∥2F + ∥VW∥∗ = α∥X − UΣW∥2F + ∥W∥∗. (7)

It is easy to verify that the Hessian matrix of the first term

H1 = I ⊗ ΣUTUΣ = I ⊗ Σ2 ≻ 0, (8)

where I ∈ Rn×n is the identity matrix, and ⊗ is the Kronecker product operator. According to equation (8), problem (7)
is strictly convex and it has a unique solution W ∗. This implies that the solution of problem (4), Z∗, is also unique, and
Z∗ = VW ∗. �

Next we prove Proposition 3. Recall the optimization problem for self-representation based methods as (9).

min
Z

f(Z) = α∥X −A(X)Z∥l +Ω(X,Z),

s.t. Z ∈ C,
(9)

Proposition 3: Problems (9) with the following Ω(Z) and C have grouping effect:

(1) Ω(Z) =
n∑

j=1

(
n∑

i=1

|Zij |p
)q

, p > 1, q ≥ 0, C = ∅.

(2) Ω(Z) = tr((ZHZT )p),H ≻ 0, p ≥ 1/2, C = ∅.
(3) Ω(Z) = tr((ZTHZ)p),H ≻ 0, p ≥ 1/2, C = ∅.

Proof : (1) It is easy to verify that EGE conditions (1) and (3) are satisfied.

Noting that the regularity term Ω(Z) =
n∑

j=1

(
n∑

i=1

|Zij |p
)q

=
n∑

j=1

∥Zj∥pqp , where ∥Zj∥p =

(
n∑

i=1

|Zij |p
)1/p

is the ℓp

vector-norm, we have Ω(Z) is strictly convex w.r.t Z. As a result, problem (9) has a unique solution. According to Proposition
1 in the paper, the grouping effect of this solution is also guaranteed.

(2) Regarding H defined by X = [x1, . . . ,xn] with H(XP ) = PTH(X)P , we can verify that Ω(Z) = tr((ZHZT )p)
satisfy EGE conditions (1) and (3).

When p > 1/2, Ω(Z) = tr((ZHZT )p) is strictly convex w.r.t Z, and thus problem (9) has a unique solution. In the
following, we will prove that when p = 1/2, problem (9) also has a unique solution

Since H ≻ 0, we can find an invertible matrix L ∈ Rn×n such that H = LLT . Substituting Z = Y L−1 into f(Z), we
have

f(Z) = h(Y ) = α∥X −XY L−1∥2F + tr((Y Y T )1/2). (10)

Noting that ∥Y ∥∗ = tr((Y Y T )1/2), similar as the proof of Proposition 2, we conclude that Y ∗ = VW ∈ S and thus an
optimization problem w.r.t W is obtained as

min
W

g(W ) = α∥X −XVWL−1∥2F + ∥VW∥∗ = α∥X − UΣWL−1∥2F + ∥W∥∗. (11)

The Hessian matrix of the first term of g(W ) is

H1 = (LLT )−T ⊗ Σ2 = H−T ⊗ Σ2. (12)

Since H ≻ 0 and Σ2 ≻ 0, we get H1 ≻ 0, which indicates the uniqueness of the solution of problem (11). Hence,
Problem (9) with Ω(Z) = tr((ZHZT )1/2),H ≻ 0, C = ∅ also has a unique solution.

According to Proposition 1, the grouping effect is proved.

(3) When p > 1/2, the uniqueness and grouping effect of the solution can be easily proved.
In the following, we prove the proposition with p = 1/2. There exists a decomposition H = LLT , L ∈ Rn×n. Substitut-

ing Z = L−TY into f(Z), we get

f(Z) = h(Y ) = α∥X −XL−TY ∥2F + ∥Y ∥∗. (13)

Note UΣV T as the SVD of XL−T and S as the subspace spanned by the columns of XL−T . Similarly as the proof of
Proposition 2, we have Y ∗ ∈ S and it is unique, which also implies the uniqueness of Z∗. As a result, Z∗ has grouping
effect. �

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVPR
#1242

CVPR
#1242

CVPR 2014 Submission #1242. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References
[1] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2007. 1
[2] G. Liu, Z. Lin, and Y. Yu. Robust subspace segmentation by low-rank representation. In ICML, pages 663–670, 2010. 1

3


